日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 循环神经网络 >内容正文

循环神经网络

【智能优化算法】基于黑猩猩算法求解多目标优化问题附matlab代码

發布時間:2023/12/20 循环神经网络 49 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【智能优化算法】基于黑猩猩算法求解多目标优化问题附matlab代码 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?1 內容介紹

tled attacker, barrier, chaser, and driver are employed for simulating the diverse intelligence. Moreover, the four main steps of hunting, driving, blocking, and attacking, are implemented. Afterward, the algorithm is tested on 30 well-known benchmark functions, and the results are compared to four newly proposed meta-heuristic algorithms in term of convergence speed, the probability of getting stuck in local minimums, and the accuracy of obtained results. The results indicate that the ChOA outperforms the other benchmark optimization algorithms.

?

2 仿真代碼

function [new_pops] = NondominatedSort_and_filling(pop, nobj, ncon, nreal, nbin)
N = size(pop,1);
fitsize = N/2;
[sorted_ranks, rankID] = sort(pop(:,nobj+ncon+nreal+nbin+2));
parentID = []; front = 1; front_array = [];
while size(parentID,2) < fitsize
? ? for i=1:N
? ? ? ? if sorted_ranks(i) ~= front
? ? ? ? ? ? break
? ? ? ? end
? ? ? ? front_array = [front_array rankID(i)];
? ? end
? ? size_check = size(parentID,2) + size(front_array,2);
? ? if size_check == fitsize
? ? ? ? parentID = [parentID front_array];
? ? ? ? break
? ? elseif size_check < fitsize
? ? ? ? parentID = [parentID front_array];
? ? ? ? sorted_ranks(1:size(front_array,2)) = [];
? ? ? ? rankID(1:size(front_array,2)) = [];
? ? ? ? N = N - size(front_array,2);
? ? ? ? front = front+1;
? ? ? ? front_array = [];
? ? else
? ? ? ? miss_size = fitsize - (size_check - size(front_array,2));
? ? ? ? n_consviol = nobj+ncon+nreal+nbin+1;
? ? ? ? n_rank= nobj+ncon+nreal+nbin+2;
? ? ? ? n_crowd = n_rank+1;

? ? ? ? if ncon==0,% if the problem does not have any constraints
? ? ? ? ? ?
? ? ? ? ? ? % sort crowding distance and select miss_size number of top individuals ?
? ? ? ? ? ? % and add them to the parent pop
? ? ? ? ? ? [~, distID] = sort(pop(front_array,n_crowd), 'descend');
? ? ? ? ? ? parentID = [parentID front_array(distID(1:miss_size))];
? ? ? ? ? ??
? ? ? ? else % if the problem have constraints
? ? ? ? ? ??
? ? ? ? ? ? %calculate the number of the feasible individuals
? ? ? ? ? ? feasible_ind=find(pop(front_array,n_consviol)==0);
? ? ? ? ? ? feasible_ind=(front_array(feasible_ind));
? ? ? ? ? ? number_feasible_ind=length(feasible_ind);
? ? ? ? ? ??
? ? ? ? ? ? if ?number_feasible_ind > miss_size, ??
? ? ? ? ? ? ? ? % sort feasible individuals based on crowdind distance?
? ? ? ? ? ? ? ? % select the best miss_size of them and add them to parent
? ? ? ? ? ? ? ? % pop
? ? ? ? ? ? ? ? [~, distID] = sort(pop(feasible_ind,n_crowd), 'descend');
? ? ? ? ? ? ? ? parentID = [parentID feasible_ind(distID(1:miss_size))]; ? ? ??
? ? ? ? ? ? elseif number_feasible_ind == miss_size,
? ? ? ? ? ? ? ? parentID = [parentID feasible_ind];?
? ? ? ? ? ? else % where number_feasible_ind < miss_size,
? ? ? ? ? ? ? ? % sort based on the constraint violation,
? ? ? ? ? ? ? ? [~, consviolationID] = sort(pop(front_array,n_consviol), 'descend');
? ? ? ? ? ? ? ? parentID = [parentID front_array(consviolationID(1:miss_size))];
? ? ? ? ? ? end
? ? ? ? end
? ? end
end
new_pops = pop(parentID,:);
end

function ab=SelectAlphaBonobo(pop,ncolumn)
[d2,ind]=sort(pop(:,ncolumn),'descend');
d2(1:2)=d2(3);
d2=d2/(sum(d2));
r=rand;
C=cumsum(d2);
i=find(r<=C,1,'first');
ab=pop(ind(i),:);
end

function ab=SelectAlphaBonobo(pop,ncolumn)
[d2,ind]=sort(pop(:,ncolumn),'descend');
d2(1:2)=d2(3);
d2=d2/(sum(d2));
r=rand;
C=cumsum(d2);
i=find(r<=C,1,'first');
ab=pop(ind(i),:);
end

3 運行結果

4 參考文獻

[1]程國森, and 崔東文. "黑猩猩優化算法-極限學習機模型在富水性分級判定中的應用." 人民黃河 43.7(2021):6.

[2]劉成漢, and 何慶. "融合多策略的黃金正弦黑猩猩優化算法." 自動化學報 47(2021):1-14.

博主簡介:擅長智能優化算法、神經網絡預測、信號處理、元胞自動機、圖像處理、路徑規劃、無人機等多種領域的Matlab仿真,相關matlab代碼問題可私信交流。

部分理論引用網絡文獻,若有侵權聯系博主刪除。

總結

以上是生活随笔為你收集整理的【智能优化算法】基于黑猩猩算法求解多目标优化问题附matlab代码的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。