机器学习—多元线性回归案例
? ? ? ? 研究一個因變量、與兩個或兩個以上自變量的回歸。亦稱為多元線性回歸,是反映一種現(xiàn)象或事物的數(shù)量依多種現(xiàn)象或事物的數(shù)量的變動而相應地變動的規(guī)律。建立多個變量之間線性或非線性數(shù)學模型數(shù)量關系式的統(tǒng)計方法。
相關數(shù)據(jù):
鏈接: https://pan.baidu.com/s/1Qv9OieI5R5zu-jbKU3bLZg?
pwd=eyzh 提取碼: eyzh
復制這段內(nèi)容后打開百度網(wǎng)盤手機App,操作更方便哦
相關概念這里不做過多的解釋,需要的可以自行查找,這里只提供機器學習該模型的用法:
以預測波士頓房價為例:
1.獲取數(shù)據(jù):"D:\mlData\house_data.csv"文件存放的地址,df.head()指定記錄數(shù)
# 1、讀取數(shù)據(jù) df=pd.read_csv("D:\mlData\house_data.csv")df.head(10) #指定前十條記錄數(shù)| 0.00632 | 18.0 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1 | 296 | 15.3 | 396.90 | 4.98 | 24.0 |
| 0.02731 | 0.0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242 | 17.8 | 396.90 | 9.14 | 21.6 |
| 0.02729 | 0.0 | 7.07 | 0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2 | 242 | 17.8 | 392.83 | 4.03 | 34.7 |
| 0.03237 | 0.0 | 2.18 | 0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3 | 222 | 18.7 | 394.63 | 2.94 | 33.4 |
| 0.06905 | 0.0 | 2.18 | 0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3 | 222 | 18.7 | 396.90 | 5.33 | 36.2 |
| 0.02985 | 0.0 | 2.18 | 0 | 0.458 | 6.430 | 58.7 | 6.0622 | 3 | 222 | 18.7 | 394.12 | 5.21 | 28.7 |
| 0.08829 | 12.5 | 7.87 | 0 | 0.524 | 6.012 | 66.6 | 5.5605 | 5 | 311 | 15.2 | 395.60 | 12.43 | 22.9 |
| 0.14455 | 12.5 | 7.87 | 0 | 0.524 | 6.172 | 96.1 | 5.9505 | 5 | 311 | 15.2 | 396.90 | 19.15 | 27.1 |
| 0.21124 | 12.5 | 7.87 | 0 | 0.524 | 5.631 | 100.0 | 6.0821 | 5 | 311 | 15.2 | 386.63 | 29.93 | 16.5 |
| 0.17004 | 12.5 | 7.87 | 0 | 0.524 | 6.004 | 85.9 | 6.5921 | 5 | 311 | 15.2 | 386.71 | 17.10 | 18.9 |
2.數(shù)據(jù)特征工程處理:ydata提取“MEDV”的數(shù)據(jù),xdata刪除“MEDV”的數(shù)據(jù)并刪除整一列
import matplotlib.pyplot as plt ydata=df['MEDV'] xdata=df.drop('MEDV',axis=1)? xdata| 0.00632 | 18.0 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1 | 296 | 15.3 | 396.90 | 4.98 |
| 0.02731 | 0.0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242 | 17.8 | 396.90 | 9.14 |
| 0.02729 | 0.0 | 7.07 | 0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2 | 242 | 17.8 | 392.83 | 4.03 |
| 0.03237 | 0.0 | 2.18 | 0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3 | 222 | 18.7 | 394.63 | 2.94 |
| 0.06905 | 0.0 | 2.18 | 0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3 | 222 | 18.7 | 396.90 | 5.33 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 0.06263 | 0.0 | 11.93 | 0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1 | 273 | 21.0 | 391.99 | 9.67 |
| 0.04527 | 0.0 | 11.93 | 0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1 | 273 | 21.0 | 396.90 | 9.08 |
| 0.06076 | 0.0 | 11.93 | 0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1 | 273 | 21.0 | 396.90 | 5.64 |
| 0.10959 | 0.0 | 11.93 | 0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1 | 273 | 21.0 | 393.45 | 6.48 |
| 0.04741 | 0.0 | 11.93 | 0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1 | 273 | 21.0 | 396.90 | 7.88 |
506 rows × 13 columns
3.數(shù)據(jù)集劃分:對數(shù)據(jù)集進行劃分一般為訓練數(shù)據(jù)集與測試數(shù)據(jù)集是8:2
#3.數(shù)據(jù)集的劃分 from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest=train_test_split(xdata,ydata,test_size=0.2,random_state=33) print(ytrain,ytest,xtrain,xtest) 229 31.5 296 27.1 425 8.3 491 13.6 418 8.8... 146 15.6 66 19.4 216 23.3 391 23.2 20 13.6 Name: MEDV, Length: 404, dtype: float64 122 20.5 400 5.6 423 13.4 447 12.6 44 21.2... 165 25.0 106 19.5 470 19.9 149 15.4 110 21.7 Name: MEDV, Length: 102, dtype: float64 CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \ 229 0.44178 0.0 6.20 0 0.504 6.552 21.4 3.3751 8 307 296 0.05372 0.0 13.92 0 0.437 6.549 51.0 5.9604 4 289 425 15.86030 0.0 18.10 0 0.679 5.896 95.4 1.9096 24 666 491 0.10574 0.0 27.74 0 0.609 5.983 98.8 1.8681 4 711 418 73.53410 0.0 18.10 0 0.679 5.957 100.0 1.8026 24 666 .. ... ... ... ... ... ... ... ... ... ... 146 2.15505 0.0 19.58 0 0.871 5.628 100.0 1.5166 5 403 66 0.04379 80.0 3.37 0 0.398 5.787 31.1 6.6115 4 337 216 0.04560 0.0 13.89 1 0.550 5.888 56.0 3.1121 5 276 391 5.29305 0.0 18.10 0 0.700 6.051 82.5 2.1678 24 666 20 1.25179 0.0 8.14 0 0.538 5.570 98.1 3.7979 4 307 PTRATIO B LSTAT 229 17.4 380.34 3.76 296 16.0 392.85 7.39 425 20.2 7.68 24.39 491 20.1 390.11 18.07 418 20.2 16.45 20.62 .. ... ... ... 146 14.7 169.27 16.65 66 16.1 396.90 10.24 216 16.4 392.80 13.51 391 20.2 378.38 18.76 20 21.0 376.57 21.02 [404 rows x 13 columns] CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \ 122 0.09299 0.0 25.65 0 0.581 5.961 92.9 2.0869 2 188 400 25.04610 0.0 18.10 0 0.693 5.987 100.0 1.5888 24 666 423 7.05042 0.0 18.10 0 0.614 6.103 85.1 2.0218 24 666 447 9.92485 0.0 18.10 0 0.740 6.251 96.6 2.1980 24 666 44 0.12269 0.0 6.91 0 0.448 6.069 40.0 5.7209 3 233 .. ... ... ... ... ... ... ... ... ... ... 165 2.92400 0.0 19.58 0 0.605 6.101 93.0 2.2834 5 403 106 0.17120 0.0 8.56 0 0.520 5.836 91.9 2.2110 5 384 470 4.34879 0.0 18.10 0 0.580 6.167 84.0 3.0334 24 666 149 2.73397 0.0 19.58 0 0.871 5.597 94.9 1.5257 5 403 110 0.10793 0.0 8.56 0 0.520 6.195 54.4 2.7778 5 384 PTRATIO B LSTAT 122 19.1 378.09 17.93 400 20.2 396.90 26.77 423 20.2 2.52 23.29 447 20.2 388.52 16.44 44 17.9 389.39 9.55 .. ... ... ... 165 14.7 240.16 9.81 106 20.9 395.67 18.66 470 20.2 396.90 16.29 149 14.7 351.85 21.45 110 20.9 393.49 13.00 [102 rows x 13 columns]4. 模型訓練:得出截距為33.046064463200565
#模型訓練--預估器 #xtrain #ytrain #導入線性回歸庫 from sklearn.linear_model import LinearRegression #創(chuàng)建回歸對象lr= LinearRegression() #模型訓練--a權重 b截距 lr.fit(xtrain,ytrain) #權重系數(shù) #y=w0+w1*x+w2*x+.....wn*x #求 w0 #求 w1..... lr.coef_#截距 lr.intercept_5.模型預測:對測試數(shù)據(jù)進行模型預測
#模型的預測 y_predict=lr.predict(xtest) y_predict #真實數(shù)據(jù) ytest 122 20.5 400 5.6 423 13.4 447 12.6 44 21.2... 165 25.0 106 19.5 470 19.9 149 15.4 110 21.7 Name: MEDV, Length: 102, dtype: float646.模型評估?
#模型評估 MSE from sklearn.metrics import mean_squared_error mse=mean_squared_error(ytest,y_predict) mse總結
以上是生活随笔為你收集整理的机器学习—多元线性回归案例的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 今天您大数据营销了吗?
- 下一篇: Java爬虫之下载IMDB中Top250