日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

3-订单持续时间的计算

發布時間:2024/1/8 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 3-订单持续时间的计算 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
#讀取taxiod訂單表 #刪除練習 import pandas as pd taxiod = pd.read_csv(r'data-sample/TaxiOD.csv',header=None) # 要加上后綴名 .csv taxiod.columns=['VehicleNum','Stime','SLng','SLat','ELng','ELat','Etime'] taxiod C:\Program Files (x86)\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3146: DtypeWarning: Columns (0,2,3,4,5) have mixed types.Specify dtype option on import or set low_memory=False.has_raised = await self.run_ast_nodes(code_ast.body, cell_name, VehicleNumStimeSLngSLatELngELatEtime01234...464714464715464716464717464718
VehicleNumStimeSLngSLatELngELatEtime
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06
2222300:36:45114.24019622.56365114.11996522.56666800:54:42
.....................
3694722:39:12114.00622.5481113.99622.537122:46:25
3694722:49:38113.99522.535113.92222.496523:13:15
3694723:24:24113.92122.5135113.9322.494223:30:32
3694723:37:09113.92822.5126113.91122.487923:49:10
3694723:52:18113.9122.4876NaNNaNNaN

464719 rows × 7 columns

taxiod=taxiod.drop([0]) # 刪除第一行 taxiod.index = range(len(taxiod)) # 重新排序索引 taxiod VehicleNumStimeSLngSLatELngELatEtime01234...464713464714464715464716464717
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06
2222300:36:45114.24019622.56365114.11996522.56666800:54:42
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:17
.....................
3694722:39:12114.00622.5481113.99622.537122:46:25
3694722:49:38113.99522.535113.92222.496523:13:15
3694723:24:24113.92122.5135113.9322.494223:30:32
3694723:37:09113.92822.5126113.91122.487923:49:10
3694723:52:18113.9122.4876NaNNaNNaN

464718 rows × 7 columns

taxiod=taxiod[-taxiod['ELng'].isnull()] # 刪掉最后一行為空的 方法 先找到為空的 然后索引 然后去掉 然后賦值給taxiod tmp= pd.to_datetime(taxiod['Stime']) tmp 0 2021-03-03 00:03:23 1 2021-03-03 00:11:33 2 2021-03-03 00:17:13 3 2021-03-03 00:36:45 4 2021-03-03 01:01:14... 464712 2021-03-03 22:08:22 464713 2021-03-03 22:39:12 464714 2021-03-03 22:49:38 464715 2021-03-03 23:24:24 464716 2021-03-03 23:37:09 Name: Stime, Length: 464717, dtype: datetime64[ns] tmp1=pd.to_datetime(taxiod['Etime']) tmp1 0 2021-03-03 00:10:48 1 2021-03-03 00:15:19 2 2021-03-03 00:29:06 3 2021-03-03 00:54:42 4 2021-03-03 01:08:17... 464712 2021-03-03 22:36:53 464713 2021-03-03 22:46:25 464714 2021-03-03 23:13:15 464715 2021-03-03 23:30:32 464716 2021-03-03 23:49:10 Name: Etime, Length: 464717, dtype: datetime64[ns] Duration=tmp1-tmp Duration taxiod['Duration']=Duration taxiod <ipython-input-10-8b258a85ed6d>:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['Duration']=Duration VehicleNumStimeSLngSLatELngELatEtimeDuration01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:25
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:46
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:53
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:03
........................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:13
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:08
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:01

464717 rows × 8 columns

taxiod.rename(columns={'duration': 'Duration'}, inplace=True) # 重命名某列 C:\Program Files (x86)\Anaconda3\lib\site-packages\pandas\core\frame.py:4296: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrameSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyreturn super().rename( taxiod VehicleNumStimeSLngSLatELngELatEtimeDuration01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:25
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:46
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:53
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:03
........................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:13
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:08
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:01

464717 rows × 8 columns

r=taxiod['Duration'].iloc[0] taxiod['order_time']=taxiod['Duration'].apply(lambda r:r.seconds) <ipython-input-13-d23b5d7f6867>:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['order_time']=taxiod['Duration'].apply(lambda r:r.seconds) taxiod.drop(columns=['Duration']) VehicleNumStimeSLngSLatELngELatEtimeorder_time01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:48445
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:19226
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:06713
2222300:36:45114.24019622.56365114.11996522.56666800:54:421077
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:17423
........................
3694722:08:22113.91422.5314113.99722.545622:36:531711
3694722:39:12114.00622.5481113.99622.537122:46:25433
3694722:49:38113.99522.535113.92222.496523:13:151417
3694723:24:24113.92122.5135113.9322.494223:30:32368
3694723:37:09113.92822.5126113.91122.487923:49:10721

464717 rows × 8 columns

taxiod['hour']=taxiod['Stime'].apply(lambda r:r.split(':')[0]) taxiod <ipython-input-15-c7c6b55b9ff2>:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value insteadSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copytaxiod['hour']=taxiod['Stime'].apply(lambda r:r.split(':')[0]) VehicleNumStimeSLngSLatELngELatEtimeDurationorder_timehour01234...464712464713464714464715464716
2222300:03:23114.1674649999999922.562468114.2252350000000122.5527500:10:480 days 00:07:2544500
2222300:11:33114.2271522.554167114.2292179999999922.56021700:15:190 days 00:03:4622600
2222300:17:13114.2313540000000122.562166114.25579822.59096700000000300:29:060 days 00:11:5371300
2222300:36:45114.24019622.56365114.11996522.56666800:54:420 days 00:17:57107700
2222301:01:14114.1354139999999822.575933114.16674822.60826701:08:170 days 00:07:0342301
..............................
3694722:08:22113.91422.5314113.99722.545622:36:530 days 00:28:31171122
3694722:39:12114.00622.5481113.99622.537122:46:250 days 00:07:1343322
3694722:49:38113.99522.535113.92222.496523:13:150 days 00:23:37141722
3694723:24:24113.92122.5135113.9322.494223:30:320 days 00:06:0836823
3694723:37:09113.92822.5126113.91122.487923:49:100 days 00:12:0172123

464717 rows × 10 columns

import matplotlib.pyplot as plt fig =plt.figure(1,(7,3),dpi=250) ax =plt.subplot(111) plt.sca(ax)plt.boxplot(taxiod['order_time']/60) plt.ylabel('minutes') plt.xlabel('order time') plt.ylim(0,60)plt.show()

?

import matplotlib.pyplot as plt fig = plt.figure(1,(10,5),dpi = 250) ax = plt.subplot(111) plt.sca(ax)#整理數據 hour = taxiod['hour'].drop_duplicates().sort_values() datas = [] for i in range(len(hour)):datas.append(taxiod[taxiod['hour']==hour.iloc[i]]['order_time']/60) #繪制 plt.boxplot(datas) #更改x軸ticks的文字 plt.xticks(range(1,len(hour)+1),list(hour)) ###################################################################################plt.ylabel('Order time(minutes)') plt.xlabel('Order start time') plt.ylim(0,60)plt.show()

?

?

import seaborn as sns fig = plt.figure(1,(10,5),dpi = 250) ax = plt.subplot(111) plt.sca(ax)# 只需一行 sns.boxplot(x='hour',y=taxiod['order_time']/60,data=taxiod,ax=ax)plt.ylabel('order_time(minutes)') plt.xlabel('order start time') plt.ylim(0,(60)) plt.show()

?

總結

以上是生活随笔為你收集整理的3-订单持续时间的计算的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 中文字幕人妻色偷偷久久 | 国产草逼视频 | 国产一区不卡 | 自拍av在线| 色偷偷噜噜噜亚洲男人 | 久久精品视 | av无遮挡 | 久久一区二区精品 | 日批网址 | 九九免费| 波多野结衣一区二区三区四区 | 成人淫片 | 久久久不卡国产精品一区二区 | xxxxwww国产| 91国偷自产一区二区三区女王 | 免费av手机在线观看 | 手机在线观看av片 | 日日爽视频 | 奇米影视狠狠 | 日韩成人免费观看 | 久久成人国产精品入口 | 高清国产午夜精品久久久久久 | av大片在线播放 | 环太平洋3:泰坦崛起 | 国产无套粉嫩白浆内谢 | 欧美电影一区二区三区 | 久热免费视频 | 亚洲再线| 亚洲精品偷拍视频 | 成人国产片 | 在线观看欧美成人 | 色婷婷av一区二区三区大白胸 | 亚洲黄色大全 | 男男做的视频 | 福利国产在线 | av天天射| 免费中文字幕日韩欧美 | 成人免费不卡视频 | 超碰97人| 在线播放a | 黑丝一区 | 人人草在线视频 | 偷拍综合网 | 国产成年网站 | 国产精品999在线观看 | 变态另类ts人妖一区二区 | 日产精品久久久久久久蜜臀 | 日本黄色大片免费看 | 99视频导航 | 刘亦菲毛片 | 少妇一晚三次一区二区三区 | 中文字幕精品久久久久人妻红杏ⅰ | 国产日韩一区二区三区 | 日本丰满熟妇videossex一 | 成人人伦一区二区三区 | 亚洲自拍第二页 | 中文字幕无码av波多野吉衣 | 亚洲激情短视频 | 玖玖爱国产 | 精品熟妇无码av免费久久 | 国产麻豆一区二区 | 污视频在线免费观看 | 3d动漫精品啪啪一区二区竹菊 | 99精品一区二区三区无码吞精 | 国产伦精品一区二区三区免费迷 | 丁香花在线影院观看在线播放 | 亚洲xx在线| 天天舔天天爽 | 成人性生交免费看 | 欧美乱码精品一区二区 | 告诉我真相俄剧在线观看 | 成人在线视频一区二区三区 | 91蜜桃臀久久一区二区 | 手机看片91 | 老牛影视av一区二区在线观看 | 日本亚洲国产 | 久草免费在线播放 | 18无码粉嫩小泬无套在线观看 | 国产一区精品在线 | 亚洲成人免费观看 | 先锋影音中文字幕 | 成人1区2区| www.激情五月.com | 国产69精品一区二区 | 成人午夜在线播放 | 午夜小影院 | 午夜亚洲 | 伊人黄色片 | 6—12呦国产精品 | 五月婷婷免费视频 | 99精品欧美一区二区三区 | 涩涩网站在线看 | 日本二区视频 | 超碰天天 | 伊人久久久 | 男人天堂国产 | 美女视频黄频视频大全 | 日韩在线高清视频 | 久热超碰 |