日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

PyTorch深度学习实践02

發(fā)布時間:2024/4/13 pytorch 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 PyTorch深度学习实践02 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

02 lnear model

問題:AttributeError: module ‘matplotlib’ has no attribute ‘plot’
原因:導入包時候是這樣寫的

import matplotlib as plt

應該改成

import matplotlib.pyplot as plt

課件代碼:函數(shù)forward()中,有一個變量w。這個變量最終的值是從for循環(huán)中傳入的。for循環(huán)中,使用了np.arrange。

range和np.arrange的區(qū)別
https://blog.csdn.net/yuanxiang01/article/details/78702123
range步長不能是小數(shù),np.arrange可以是

# -*- codeing = utf-8 -*- # @Time :2021/4/12 11:05 # @Author:sueong # @File:test.py # @Software:PyCharm import numpy as np import matplotlib.pyplot as plt x_data=[1.0,2.0,3.0]#準備dataset y_data=[2.0,4.0,6.0]def forward(x):#前置函數(shù) 就是模型return x*wdef loss(x,y):#lossy_pre=forward(x)return (y_pre-y)*(y_pre-y)''' >>>a = [1,2,3] >>> b = [4,5,6] >>> c = [4,5,6,7,8] >>> zipped = zip(a,b) # 打包為元組的列表 [(1, 4), (2, 5), (3, 6)] >>> zip(a,c) # 元素個數(shù)與最短的列表一致 [(1, 4), (2, 5), (3, 6)] >>> zip(*zipped) # 與 zip 相反,*zipped 可理解為解壓,返回二維矩陣式 [(1, 2, 3), (4, 5, 6)]zip 可以把y=f(x) x和y對應起來是一組值 ''' w_list=[] mse=[] for w in np.arange(0.0,4.1,0.1):print('w=',w)l_sum=0for x_val,y_val in zip(x_data,y_data):y_pre_val=forward(x_val)loss_val=loss(x_val,y_val)l_sum+=loss_valprint('\t',x_val,y_val,y_pre_val,loss_val)print('MSE=',l_sum/3)w_list.append(w)mse.append(l_sum/3)plt.plot(w_list, mse) plt.ylabel('Loss') plt.xlabel('w') plt.show()''' F:\anaconda\envs\pytorch\python.exe F:/pythonProject1/pytorch_liu/test.py w= 0.01.0 2.0 0.0 4.02.0 4.0 0.0 16.03.0 6.0 0.0 36.0 MSE= 18.666666666666668 w= 0.11.0 2.0 0.1 3.612.0 4.0 0.2 14.443.0 6.0 0.30000000000000004 32.49 MSE= 16.846666666666668 w= 0.21.0 2.0 0.2 3.242.0 4.0 0.4 12.963.0 6.0 0.6000000000000001 29.160000000000004 MSE= 15.120000000000003 w= 0.300000000000000041.0 2.0 0.30000000000000004 2.88999999999999972.0 4.0 0.6000000000000001 11.5599999999999993.0 6.0 0.9000000000000001 26.009999999999998 MSE= 13.486666666666665 w= 0.41.0 2.0 0.4 2.56000000000000052.0 4.0 0.8 10.2400000000000023.0 6.0 1.2000000000000002 23.04 MSE= 11.946666666666667 w= 0.51.0 2.0 0.5 2.252.0 4.0 1.0 9.03.0 6.0 1.5 20.25 MSE= 10.5 w= 0.60000000000000011.0 2.0 0.6000000000000001 1.95999999999999972.0 4.0 1.2000000000000002 7.8399999999999993.0 6.0 1.8000000000000003 17.639999999999993 MSE= 9.146666666666663 w= 0.70000000000000011.0 2.0 0.7000000000000001 1.68999999999999952.0 4.0 1.4000000000000001 6.7599999999999983.0 6.0 2.1 15.209999999999999 MSE= 7.886666666666666 w= 0.81.0 2.0 0.8 1.442.0 4.0 1.6 5.763.0 6.0 2.4000000000000004 12.959999999999997 MSE= 6.719999999999999 w= 0.91.0 2.0 0.9 1.21000000000000022.0 4.0 1.8 4.8400000000000013.0 6.0 2.7 10.889999999999999 MSE= 5.646666666666666 w= 1.01.0 2.0 1.0 1.02.0 4.0 2.0 4.03.0 6.0 3.0 9.0 MSE= 4.666666666666667 w= 1.11.0 2.0 1.1 0.80999999999999982.0 4.0 2.2 3.23999999999999933.0 6.0 3.3000000000000003 7.289999999999998 MSE= 3.779999999999999 w= 1.20000000000000021.0 2.0 1.2000000000000002 0.63999999999999972.0 4.0 2.4000000000000004 2.55999999999999873.0 6.0 3.6000000000000005 5.759999999999997 MSE= 2.986666666666665 w= 1.31.0 2.0 1.3 0.489999999999999942.0 4.0 2.6 1.95999999999999973.0 6.0 3.9000000000000004 4.409999999999998 MSE= 2.2866666666666657 w= 1.40000000000000011.0 2.0 1.4000000000000001 0.35999999999999982.0 4.0 2.8000000000000003 1.43999999999999933.0 6.0 4.2 3.2399999999999993 MSE= 1.6799999999999995 w= 1.51.0 2.0 1.5 0.252.0 4.0 3.0 1.03.0 6.0 4.5 2.25 MSE= 1.1666666666666667 w= 1.61.0 2.0 1.6 0.159999999999999922.0 4.0 3.2 0.63999999999999973.0 6.0 4.800000000000001 1.4399999999999984 MSE= 0.746666666666666 w= 1.70000000000000021.0 2.0 1.7000000000000002 0.08999999999999992.0 4.0 3.4000000000000004 0.35999999999999963.0 6.0 5.1000000000000005 0.809999999999999 MSE= 0.4199999999999995 w= 1.81.0 2.0 1.8 0.039999999999999982.0 4.0 3.6 0.159999999999999923.0 6.0 5.4 0.3599999999999996 MSE= 0.1866666666666665 w= 1.90000000000000011.0 2.0 1.9000000000000001 0.0099999999999999742.0 4.0 3.8000000000000003 0.03999999999999993.0 6.0 5.7 0.0899999999999999 MSE= 0.046666666666666586 w= 2.01.0 2.0 2.0 0.02.0 4.0 4.0 0.03.0 6.0 6.0 0.0 MSE= 0.0 w= 2.11.0 2.0 2.1 0.0100000000000000182.0 4.0 4.2 0.040000000000000073.0 6.0 6.300000000000001 0.09000000000000043 MSE= 0.046666666666666835 w= 2.21.0 2.0 2.2 0.040000000000000072.0 4.0 4.4 0.160000000000000283.0 6.0 6.6000000000000005 0.36000000000000065 MSE= 0.18666666666666698 w= 2.30000000000000031.0 2.0 2.3000000000000003 0.090000000000000162.0 4.0 4.6000000000000005 0.360000000000000653.0 6.0 6.9 0.8100000000000006 MSE= 0.42000000000000054 w= 2.40000000000000041.0 2.0 2.4000000000000004 0.160000000000000282.0 4.0 4.800000000000001 0.64000000000000113.0 6.0 7.200000000000001 1.4400000000000026 MSE= 0.7466666666666679 w= 2.51.0 2.0 2.5 0.252.0 4.0 5.0 1.03.0 6.0 7.5 2.25 MSE= 1.1666666666666667 w= 2.61.0 2.0 2.6 0.36000000000000012.0 4.0 5.2 1.44000000000000043.0 6.0 7.800000000000001 3.2400000000000024 MSE= 1.6800000000000008 w= 2.71.0 2.0 2.7 0.490000000000000272.0 4.0 5.4 1.9600000000000013.0 6.0 8.100000000000001 4.410000000000006 MSE= 2.2866666666666693 w= 2.80000000000000031.0 2.0 2.8000000000000003 0.64000000000000052.0 4.0 5.6000000000000005 2.5600000000000023.0 6.0 8.4 5.760000000000002 MSE= 2.986666666666668 w= 2.90000000000000041.0 2.0 2.9000000000000004 0.81000000000000062.0 4.0 5.800000000000001 3.24000000000000243.0 6.0 8.700000000000001 7.290000000000005 MSE= 3.780000000000003 w= 3.01.0 2.0 3.0 1.02.0 4.0 6.0 4.03.0 6.0 9.0 9.0 MSE= 4.666666666666667 w= 3.11.0 2.0 3.1 1.21000000000000022.0 4.0 6.2 4.8400000000000013.0 6.0 9.3 10.890000000000004 MSE= 5.646666666666668 w= 3.21.0 2.0 3.2 1.44000000000000042.0 4.0 6.4 5.7600000000000023.0 6.0 9.600000000000001 12.96000000000001 MSE= 6.720000000000003 w= 3.30000000000000031.0 2.0 3.3000000000000003 1.69000000000000062.0 4.0 6.6000000000000005 6.76000000000000253.0 6.0 9.9 15.210000000000003 MSE= 7.886666666666668 w= 3.40000000000000041.0 2.0 3.4000000000000004 1.9600000000000012.0 4.0 6.800000000000001 7.8400000000000043.0 6.0 10.200000000000001 17.640000000000008 MSE= 9.14666666666667 w= 3.51.0 2.0 3.5 2.252.0 4.0 7.0 9.03.0 6.0 10.5 20.25 MSE= 10.5 w= 3.61.0 2.0 3.6 2.56000000000000052.0 4.0 7.2 10.2400000000000023.0 6.0 10.8 23.040000000000006 MSE= 11.94666666666667 w= 3.71.0 2.0 3.7 2.89000000000000062.0 4.0 7.4 11.5600000000000023.0 6.0 11.100000000000001 26.010000000000016 MSE= 13.486666666666673 w= 3.80000000000000031.0 2.0 3.8000000000000003 3.2400000000000012.0 4.0 7.6000000000000005 12.9600000000000043.0 6.0 11.4 29.160000000000004 MSE= 15.120000000000005 w= 3.90000000000000041.0 2.0 3.9000000000000004 3.6100000000000012.0 4.0 7.800000000000001 14.4400000000000053.0 6.0 11.700000000000001 32.49000000000001 MSE= 16.84666666666667 w= 4.01.0 2.0 4.0 4.02.0 4.0 8.0 16.03.0 6.0 12.0 36.0 MSE= 18.666666666666668Process finished with exit code 0'''


作業(yè):

3d畫圖

https://blog.csdn.net/u014636245/article/details/82799573

numpy.linspace使用詳解:

https://blog.csdn.net/u014636245/article/details/82799573

https://blog.csdn.net/guduruyu/article/details/78050268

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
在指定的間隔內(nèi)返回均勻間隔的數(shù)字。
返回num均勻分布的樣本,在[start, stop]。
這個區(qū)間的端點可以任意的被排除在外。

import numpy as np import matplotlib.pyplot as pltx = np.array([0, 1, 2]) y = np.array([0, 1])X, Y = np.meshgrid(x, y) print(X) print(Y)plt.plot(X, Y,color='red', # 全部點設(shè)置為紅色marker='.', # 點的形狀為圓點linestyle='') # 線型為空,也即點與點之間不用線連接 plt.grid(True) plt.show()''' # 從輸出的結(jié)果來看,兩種方法生成的坐標矩陣一毛一樣。 [[0 1 2][0 1 2]] [[0 0 0][1 1 1]]'''

3D表面形狀的繪制例子

from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as npfig = plt.figure() ax = fig.add_subplot(111, projection='3d')# Make data u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100) x = 10 * np.outer(np.cos(u), np.sin(v)) y = 10 * np.outer(np.sin(u), np.sin(v)) z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))# Plot the surface ax.plot_surface(x, y, z, color='b')plt.show()

# -*- codeing = utf-8 -*- # @Time :2021/4/12 11:05 # @Author:sueong # @File:test.py # @Software:PyCharmfrom mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as npplt.show() x_data=[1.0,2.0,3.0]#準備dataset y_data=[5.0,8.0,11.0]def forward(x):#前置函數(shù) 就是模型return x*w+bdef loss(x,y):#lossy_pre=forward(x)return (y_pre-y)*(y_pre-y)w=np.arange(0.0,4.1,0.1) b=np.arange(0.0,4.1,0.1) [w,b]=np.meshgrid(w,b) mse=[]l_sum=0 for x_val,y_val in zip(x_data,y_data):y_pre_val=forward(x_val)loss_val=loss(x_val,y_val)l_sum+=loss_valprint('\t',x_val,y_val,y_pre_val,loss_val) print('MSE=',l_sum/3) mse.append(l_sum/3)fig=plt.figure() ax=Axes3D(fig) ax.plot_surface(w,b,l_sum/3) plt.show()

np.meshgrid()的用法

#coding:utf-8 import numpy as np # 坐標向量 a = np.array([1,2,3]) # 坐標向量 b = np.array([7,8]) # 從坐標向量中返回坐標矩陣 # 返回list,有兩個元素,第一個元素是X軸的取值,第二個元素是Y軸的取值 res = np.meshgrid(a,b) #返回結(jié)果: [array([ [1,2,3] [1,2,3] ]), array([ [7,7,7] [8,8,8] ])]

超強干貨來襲 云風專訪:近40年碼齡,通宵達旦的技術(shù)人生

總結(jié)

以上是生活随笔為你收集整理的PyTorch深度学习实践02的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。