日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

PyTorch深度学习实践03

發布時間:2024/4/13 pytorch 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 PyTorch深度学习实践03 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

梯度下降

-- codeing = utf-8 --

@Time :2021/4/12 20:25

@Author:sueong

@File:03.py

@Software:PyCharm

import numpy as np import matplotlib.pyplot as pltx_data=[1.0,2.0,3.0] y_data=[2.0,4.0,6.0] w=1.0#初始值假設為1.0 w=w-a*cost對w的偏導cost_list=[] epoch_list=[] def forword(x):return x*wdef cost(xs,ys):l_sum = 1for x,y in zip(x_data,y_data):y_pre = forword(x)l_sum+=(y_pre-y)**2return l_sum/len(xs)def gradient(xs,ys):grad=0for x, y in zip(x_data, y_data):y_pre = forword(x)grad+=2*x*(y_pre-y)return grad/len(xs)print('predict before traing',4,forword(4)) for epoch in range(100):epoch_list.append(epoch)cost_val=cost(x_data,y_data)cost_list.append(cost_val)grad_val=gradient(x_data,y_data)w-=0.01*grad_valprint('Epoch=',epoch,'w=',w,'loss',cost_val) print('predict(after training)',4,forword(4))plt.plot(epoch_list,cost_list) plt.ylabel('epoch') plt.xlabel('cost') plt.show()

隨機梯度下降


從左邊變成右邊這樣

# -*- codeing = utf-8 -*- # @Time :2021/4/12 20:58 # @Author:sueong # @File:Stochastic Gradient Descent.py # @Software:PyCharm # -*- codeing = utf-8 -*- # @Time :2021/4/12 20:25 # @Author:sueong # @File:03.py # @Software:PyCharm import numpy as np import matplotlib.pyplot as pltx_data=[1.0,2.0,3.0] y_data=[2.0,4.0,6.0] w=1.0#初始值假設為1.0 w=w-a*cost對w的偏導cost_list=[] epoch_list=[] def forword(x):return x*wdef loss(x,y):y_pre = forword(x)return (y_pre-y)**2def gradient(x,y):return 2*x*(x*w-y)print('predict before traing',4,forword(4)) for epoch in range(100):epoch_list.append(epoch)for x,y in zip(x_data,y_data):grad=gradient(x,y)#對每個樣本grad就更新ww=w-0.01*gradprint('\tgrad:',x,y,grad)l=loss(x,y)print('Epoch=',epoch,'w=',w,'loss',l)cost_list.append(l)print('predict(after training)',4,forword(4))plt.plot(epoch_list,cost_list) plt.ylabel('epoch') plt.xlabel('cost') plt.show()

總結

以上是生活随笔為你收集整理的PyTorch深度学习实践03的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。