日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

整数点与Pick定理

發布時間:2024/4/15 编程问答 45 豆豆
生活随笔 收集整理的這篇文章主要介紹了 整数点与Pick定理 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Pick 定理?? 設以整數點為頂點的多邊形的面積為S,多邊形內部的整數點數為N,多邊形邊界上的整數點數為L,則

??????????????? N+1/2L-1=S.

????? 對于N與L的計算由下面的程序給出:

typedef struct Point

{

????? int x,y;

}POINT;

int gcd(int a,int b)???????????????????????? //求數a,b的最大公因數

{

???? if(b==0) return a;

???? else return gcd(b,a%b);

}

多邊形邊上的網格點個數有下列程序段給出:

int OnEdge(int n,POINT *p)

{

???? int i,ret=0;

???? for(i=0;i<n;i++)

????????? ret+=gcd(fabs(p[i].x-p[(i+1)%n].x),fabs(p[i].y-p[(i+1)%n].y));

???? return ret;

}

多邊形內部的網格點個數由下列程序段給出:

int InSide(int n,POINT *p)

{

??? int i,area=0;

??? for(i=0;i<n;i++) area+=p[(i+1)%n].y*(p[i].x-p[(i+2)%n].x);???????????//計算面積

????return (fabs(area)-OnEdge(n,p))/2?+1;

}

?

問題描述

????? 格點是一個有序(x,y),其中x和y都是整數。給定三角形的頂點坐標(碰巧是格點),要你計算完全在三角形中的頂點個數(三角形邊上和三角形的頂點不必計算)。

輸入????

???? 輸入有多組測試數據。每組測試數據由6個整數x1,y1,x2,y2,x3和y3組成,其中,(x1,y1)、(x2,y2)和(x3,y3)是三角形的頂點坐標。輸入中的所有三角形都是非退化的(有正的面積),-15000≤x1,y1,x2,y2,x3,y3≤15000。當輸入的數滿足x1=y1=x2=y2=x3=y3=0時表示輸入結束,不必處理。

輸出

???? 對每組測試數據,單行上輸出三角形內部格點的個數。

輸入樣例????????????????????????????????????????????????? 輸出樣例

0 0 1 0 0 1????????????????????????????????????????????? 0

0 0 5 0 0 5????????????????????????????????????????????? 6

0 0 0 0 0 0????

?

分析

???? 本題可直接用Pick定理:area=OnEdge/2+InSide-1,其中area為頂點都是格點的多邊形的面積,OnEdge為多邊形上的格點數,InSide為多邊形內部的格點數。

???? 多邊形的面積可用叉積計算,但注意可能為負值,需轉換。給定兩個格點A(x0,y0),B(x1,y1)。設C(X,Y)是線段AB上的一個結點。那么,x=x0+λ(x1-x0),y=y0+λ(y1-y0),(0≤λ≤1)。要使x與y均為整數,λ必為一個分數,而且λ的分母是x1-x0與y1-y0的公因數,因此可用最大公因數算法gcd求得。

?

參考程序

?

#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
typedef struct Point
{
int x,y;
}POINT;
int gcd(int a,int b)
{
if(b==0) return a;
else return gcd(b,a%b);
}
int Int_area(POINT a,POINT b,POINT c) //平行四邊形面積
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int edgenum(POINT a,POINT b)
{
int dx,dy;
dx=a.x-b.x;
if(dx<0) dx=-dx;
dy=a.y-b.y;
if(dy<0) dy=-dy;
return gcd(dx,dy);
}
int main()
{
POINT a,b,c;
int area,OnEdge,InSide;
while(cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y&&(a.x||a.y||b.x||b.y||c.x||c.y))
{
area=Int_area(a,b,c);
if(area<0) area=-area;
OnEdge=edgenum(a,b)+edgenum(b,c)+edgenum(c,a);
InSide=(area-OnEdge+2)/2; //Pick定理應用,area是三角形面積的2倍
cout<<InSide<<endl;
}
return 0;
}

?

?

轉載于:https://www.cnblogs.com/zzw818/archive/2011/11/02/2232720.html

總結

以上是生活随笔為你收集整理的整数点与Pick定理的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。