日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

[Kaggle] Housing Prices 房价预测

發(fā)布時間:2024/7/5 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [Kaggle] Housing Prices 房价预测 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

文章目錄

    • 1. Baseline
      • 1. 特征選擇
      • 2. 異常值剔除
      • 3. 建模預(yù)測
    • 2. 待優(yōu)化特征工程

房價預(yù)測 kaggle 地址

參考文章:kaggle比賽:房價預(yù)測(排名前4%)

1. Baseline

import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.impute import SimpleImputer from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelBinarizer from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.pipeline import FeatureUnion from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score train = pd.read_csv("./train.csv") test = pd.read_csv("./test.csv") # RangeIndex: 1460 entries, 0 to 1459 # Data columns (total 81 columns):

1. 特征選擇

  • 數(shù)據(jù)有79個特征,我們選出相關(guān)系數(shù)最高的10個
abs(train.corr()['SalePrice']).sort_values(ascending=False).plot.bar()

most_10_important = abs(corrmat["SalePrice"]).sort_values(ascending=False)[1:11].index

最相關(guān)的特征 ['OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea', otalBsmtSF', '1stFlrSF', 'FullBath', 'TotRmsAbvGrd', 'YearBuilt', 'YearRemodAdd']

2. 異常值剔除

  • 部分數(shù)據(jù)異常,刪除
sns.pairplot(x_vars=most_10_important[0:5], y_vars=['SalePrice'], data=train, dropna=True) sns.pairplot(x_vars=most_10_important[5:], y_vars=['SalePrice'], data=train, dropna=True) # help(sns.pairplot)

#刪除異常值 train = train.drop(train[(train['OverallQual']<5)&(train['SalePrice']>200000)].index) train = train.drop(train[(train['GrLivArea']>4000)&(train['SalePrice']<300000)].index) train = train.drop(train[(train['YearBuilt']<1900)&(train['SalePrice']>400000)].index) train = train.drop(train[(train['TotalBsmtSF']>6000)&(train['SalePrice']<200000)].index) sns.pairplot(x_vars=most_10_important[0:5], y_vars=['SalePrice'], data=train, dropna=True) sns.pairplot(x_vars=most_10_important[5:], y_vars=['SalePrice'], data=train, dropna=True) # help(sns.pairplot)

X_train = train[most_10_important] X_test = test[most_10_important] y_train = train['SalePrice']
  • 年份數(shù)據(jù)作為文字變量
X_train['YearBuilt'] = X_train['YearBuilt'].astype(str) X_train['YearRemodAdd'] = X_train['YearRemodAdd'].astype(str) X_test['YearBuilt'] = X_test['YearBuilt'].astype(str) X_test['YearRemodAdd'] = X_test['YearRemodAdd'].astype(str) def num_cat_splitor(X_train):s = (X_train.dtypes == 'object')object_cols = list(s[s].index)num_cols = list(set(X_train.columns) - set(object_cols))return num_cols, object_cols num_cols, object_cols = num_cat_splitor(X_train) class DataFrameSelector(BaseEstimator, TransformerMixin):def __init__(self, attribute_names):self.attribute_names = attribute_namesdef fit(self, X, y=None):return selfdef transform(self, X):return X[self.attribute_names].valuesnum_pipeline = Pipeline([('selector', DataFrameSelector(num_cols)),('imputer', SimpleImputer(strategy="median")),('std_scaler', StandardScaler()),]) cat_pipeline = Pipeline([('selector', DataFrameSelector(object_cols)),('cat_encoder', OneHotEncoder(sparse=False,handle_unknown='ignore')),]) full_pipeline = FeatureUnion(transformer_list=[("num_pipeline", num_pipeline),("cat_pipeline", cat_pipeline),]) X_prepared = full_pipeline.fit_transform(X_train)

3. 建模預(yù)測

prepare_select_and_predict_pipeline = Pipeline([('preparation', full_pipeline),('forst_reg', RandomForestRegressor(random_state=0)) ]) param_grid = [{'preparation__num_pipeline__imputer__strategy': ['mean', 'median', 'most_frequent'],'forst_reg__n_estimators' : [50,100, 150, 200,250,300,330,350],'forst_reg__max_features':[45,50, 55, 65] }]grid_search_prep = GridSearchCV(prepare_select_and_predict_pipeline, param_grid, cv=7,scoring='neg_mean_squared_error', verbose=2, n_jobs=-1) grid_search_prep.fit(X_train,y_train) grid_search_prep.best_params_ final_model = grid_search_prep.best_estimator_ y_pred_test = final_model.predict(X_test) result = pd.DataFrame() result['Id'] = test['Id'] result['SalePrice'] = y_pred_test result.to_csv('housing_price_10_features.csv',index=False)


得分:19154.16762

2. 待優(yōu)化特征工程

待學習 My Top 1% Approach: EDA, New Models and Stacking

總結(jié)

以上是生活随笔為你收集整理的[Kaggle] Housing Prices 房价预测的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。