日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

局部最小点

發布時間:2024/9/30 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 局部最小点 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

http://haixiaoyang.wordpress.com/category/search-binary-search/

/* Suppose we are given an array A[1 .. n] with the special property that A[1] ≥A[2] and A[n ? 1] ≤A[n]. We say that an element A[x] is a local minimum if it is less than or equal to both its neighbors, or more formally, if A[x ? 1] ≥A[x] and A[x] ≤A[x + 1]. For example, there are ?ve local minima in the following array: 9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9 We can obviously ?nd a local minimum in O(n) time by scanning through the array. Describe and analyze an algorithm that ?nds a local minimum in O(log n) time *///Same as previous binary search, based on location! When if returns? //When it should search left, when it should search right? int findLocalMin(int a[], int n) {assert(a && n > 2);int nBeg = 0;int nEnd = n-1;while (nBeg <= nEnd){int nMid = nBeg + (nEnd - nBeg)/2;//This logic is straight forwardif (nMid > 0 && nMid < n-1 && a[nMid-1] >= a[nMid] && a[nMid+1] >= a[nMid])return nMid;//The most important thing is how to come up with the logic below://1: should search left if in the right most point, obvious//2: UNDER THE SITUATION THAT nMid is not a middle point,// can judge the trend by (nMid, nMid+1) or (nMid-1, nMid)// take advantage of nMid != n-1 when reaching the right half of logicif ((nMid == n-1) || (a[nMid] <= a[nMid+1])) //Pitfall, less equal than not less!!nEnd = nMid - 1;else nBeg = nMid + 1; //Otherwise logic}return -1; }


一定要注意這個條件,a[1] >=a[2] ? ?a[n-1] <= a[n]

那么在此區間內肯定至少有一個局部最小點


如果 ?a[mid-1]<=a[mid] <= a[mid+1]

則在beg-mid區間肯定有局部最小


如果a[mid-1]>= a[mid]>=a[mid+1]

則在mid-end區間肯定有局部最小


如果 a[mid-1]<= a[mid]>=a[mid+1]

在兩個區間內均存在局部最小

總結

以上是生活随笔為你收集整理的局部最小点的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。