日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

计算机一级电子表格TF函数,tf.slice()函数详解(极详细)

發布時間:2024/10/6 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 计算机一级电子表格TF函数,tf.slice()函数详解(极详细) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

tf.slice()是TensorFlow庫中分割張量的一個函數,其定義為def slice(input_, begin, size, name=None):。tf.slice()函數的那些參數設置實在是不好理解,查了好多資料才理解,所以這邊記錄一下。

1.官方注釋

官方的注釋如下:

"""Extracts a slice from a tensor.

This operation extracts a slice of size `size` from a tensor `input` starting

at the location specified by `begin`. The slice `size` is represented as a

tensor shape, where `size[i]` is the number of elements of the 'i'th dimension

of `input` that you want to slice. The starting location (`begin`) for the

slice is represented as an offset in each dimension of `input`. In other

words, `begin[i]` is the offset into the 'i'th dimension of `input` that you

want to slice from.

Note that @{tf.Tensor.__getitem__} is typically a more pythonic way to

perform slices, as it allows you to write `foo[3:7, :-2]` instead of

`tf.slice([3, 0], [4, foo.get_shape()[1]-2])`.

`begin` is zero-based; `size` is one-based. If `size[i]` is -1,

all remaining elements in dimension i are included in the

slice. In other words, this is equivalent to setting:

`size[i] = input.dim_size(i) - begin[i]`

This operation requires that:

`0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

翻譯一下就是:

tf.slice()函數的作用就是從張量中提取想要的切片。此操作從由begin指定位置開始的張量input中提取一個尺寸size的切片.切片size被表示為張量形狀,其中size[i]是你想要分割的input的第i維的元素的數量.切片的起始位置(begin)表示為每個input維度的偏移量.換句話說,begin[i]是你想從中分割出來的input的“第i個維度”的偏移量。

請注意,tf.Tensor.__getitem__通常是執行切片的python方式,因為它允許您寫foo[3:7, :-2],而不是tf.slice([3, 0], [4, foo.get_shape()[1]-2]).

begin是基于零的;size是一個基礎.如果size[i]是-1,則維度i中的所有其余元素都包含在切片中.

換句話說,這相當于設置:

size[i] = input.dim_size(i) - begin[i]

該操作要求:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

看完注釋還是挺懵的,下面看看解釋。

2.參數解釋

def slice(input_, begin, size, name=None):

...

return gen_array_ops._slice(input_, begin, size, name=name)

input_

input_類型為一個tensor,表示的是輸入的tensor,也就是被切的那個

begin

begin是一個int32或int64類型的tensor,表示的是每一個維度的起始位置

size

size是一個int32或int64類型的tensor,表示的是每個維度要拿的元素數

name=None

name是操作的名稱,可寫可不寫

return

返回一個和輸入類型一樣的tensor

3.例子

還是通過例子來講解會比較容易理解

例1

t = tf.constant([[[1, 1, 1], [2, 2, 2]],

[[3, 3, 3], [4, 4, 4]],

[[5, 5, 5], [6, 6, 6]]])

tf.slice(t, [1, 0, 0], [1, 1, 3]) # 輸出[[[3, 3, 3]]]

首先作為一個3維數組t,要先明白他的shape是[3,2,3].

這個shape是怎么來的呢?咱們把這個t分解一下看就好理解了。那一大堆有括號的t,只看它最外面的括號的話,可以看成是:

t = [A, B, C] #這是第一維度

然后每一個里面有兩個東西,可以寫成:

A = [i, j], B = [k, l], C = [m, n] #這是第二維度

最后,這i, j, k, l, m, n里面分別是:

i = [1, 1, 1], j = [2, 2, 2], k = [3, 3 ,3], l = [4, 4, 4], m = [5, 5, 5], n = [6, 6, 6] # 這是第三維度

所以shape就是中括號 [ ] 的層級里單位的數量。

對于t來說,最外面括號里有3個東西,分別是A, B, C。這三個東西每個里面有兩個玩意兒, i和j, k和l, m和n。他們里面每一個又有3個數字。所以t的shape是[3,2,3]。

有了這個基礎,我們再來看例子:

t = tf.constant([[[1, 1, 1], [2, 2, 2]],

[[3, 3, 3], [4, 4, 4]],

[[5, 5, 5], [6, 6, 6]]])

tf.slice(t, [1, 0, 0], [1, 1, 3]) # begin = [1, 0, 0]

有了這個基礎,我們再來看例子:

tf.slice(t, [1, 0, 0], [1, 1, 3]) # begin = [1, 0, 0]

注意一下,python的數組index是從0開始的。

這里根據順序我們知道,begin是[1, 0, 0], size是[1, 1, 3]. 他們兩個數組的意義是從左至右,每一個數字代表一個維度。上面說了begin的意思是起始位置,那么[1, 0, 0]的意思是在3個維度中,每個維度從哪里算起。

第一維度是[A, B, C]。 begin里[1, 0, 0]是1,也就是從B算起。其次第二維度里B = [k, l](注意啊,我這里只寫了B = [k, l],可不代表只有B有用,如果size里第一個數字是2的話,B和C都會被取的),begin里第二個數是0,也就是從k算起。第三維度k = [3, 3 ,3],begin里第三個數是0,就是從第一個3算起。

到現在都能看懂吧?知道了這三個起始點之后,再來看size。

size的意思是每個維度的大小,也就是每個維度取幾個元素。size的應該是最后輸出的tensor的shape。

例子里面:

tf.slice(t, [1, 0, 0], [1, 1, 3]) # size = [1, 1, 3]

size里第一個是1,意思是在第一個維度取1個元素。t = [A, B, C] begin是起算是B,取一個那就是B了唄。那么第一維度結果就是[B]

size第二個也是1,第二維度B = [k, l], begin里起算是k,取一個是k。那么第二維度結果是[[k]]。

size第三個是3,第三維度k = [3, 3 ,3],begin里起算是第一個3。三個3取3個數,那就要把三個3都取了,所以是

[[[3, 3, 3]]]

看懂了嗎?是不是有點像代數?[B]里把B換成[k], 再把k換成[3, 3 ,3]。最后注意中括號的數量,和size一樣是[1, 1, 3].

例2

t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])

tf.slice(t, [1, 0, 0], [-1, -1, -1])

對于這種情況,源代碼注釋中有一句話:

If `size[i]` is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: `size[i] = input.dim_size(i) - begin[i]`

也就是說,如果size輸入值是-1的話,在那個維度剩下的數都會slice走。上面的例子中,begin是[1, 0, 0]。三個維度都是-1的話,那么結果: 第一維度是[B,C];第二維度是[[k, l], [m, n]]; 第三維度是[[[3,3,3], [4,4,4]], [[5,5,5], [6,6,6]]]

例3

import tensorflow as tf

sess = tf.Session()

input = tf.constant([[[[1, 1, 1], [2, 2, 2]],

[[3, 3, 3], [4, 4, 4]],

[[5, 5, 5], [6, 6, 6]]],

[[[1, 1, 1], [2, 2, 2]],

[[3, 3, 3], [4, 4, 4]],

[[5, 5, 5], [6, 6, 6]]]])

print(input)

output=tf.slice(input,[0,0,0,1],[2,3,2,1])

print(output)

print(sess.run(output))

參考

碼字不易,如果您覺得有幫助,麻煩點個贊再走唄~

總結

以上是生活随笔為你收集整理的计算机一级电子表格TF函数,tf.slice()函数详解(极详细)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。