日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

七月在线 《关键点检测概览与环境配置》

發布時間:2024/10/8 编程问答 40 豆豆
生活随笔 收集整理的這篇文章主要介紹了 七月在线 《关键点检测概览与环境配置》 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

七月在線 課程:https://www.julyedu.com/course/getDetail/262

什么是關鍵點?

關鍵點定義:關鍵點也稱為興趣點,它是2D圖像、3D點云或曲面模型上,可以通過定義檢測標準來獲取的具有穩定性、區別性的點集。關鍵點檢測涉及同時檢測人和定位他們的關鍵點。關鍵點與興趣點相同。它們是空間位置或圖像中的點,它們定義了圖像中有趣或突出的內容。它們對圖像旋轉、收縮、平移、失真等是不變的。

關鍵點的意義?

加快后續識別、追蹤等數據的處理速度。

環境配置

nvidia GPU 配置:

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

code : MNIST

MNIST實戰!

import torch from torchvision import datasets, transforms import matplotlib.pyplot as plt import os import torchvision import numpy as np from torch.autograd import Variable import random %matplotlib inlinetransform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])data_train = datasets.MNIST(root = "./data/",transform=transform,train = True,download = True)data_test = datasets.MNIST(root="./data/",transform = transform,train = False)data_loader_train = torch.utils.data.DataLoader(dataset=data_train,batch_size = 64,shuffle = True,num_workers=2)data_loader_test = torch.utils.data.DataLoader(dataset=data_test,batch_size = 64,shuffle = True,num_workers=2)images, labels = next(iter(data_loader_train)) img = torchvision.utils.make_grid(images)img = img.numpy().transpose(1,2,0) std = [0.5,0.5,0.5] mean = [0.5,0.5,0.5] img = img*std+mean print([labels[i] for i in range(64)]) plt.imshow(img)class Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.conv1 = torch.nn.Sequential(torch.nn.Conv2d(1,64,kernel_size=3,stride=1,padding=1),torch.nn.ReLU(),torch.nn.Conv2d(64,128,kernel_size=3,stride=1,padding=1),torch.nn.ReLU(),torch.nn.MaxPool2d(stride=2,kernel_size=2))self.dense = torch.nn.Sequential(torch.nn.Linear(14*14*128,1024),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(1024, 10))def forward(self, x):x = self.conv1(x)x = x.view(-1, 14*14*128)x = self.dense(x)return xcost = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) n_epochs = 5for epoch in range(n_epochs):running_loss = 0.0running_correct = 0print("Epoch {}/{}".format(epoch, n_epochs))print("-"*10)for data in data_loader_train:X_train, y_train = dataX_train, y_train = Variable(X_train), Variable(y_train)outputs = model(X_train)_,pred = torch.max(outputs.data, 1)optimizer.zero_grad()loss = cost(outputs, y_train)loss.backward()optimizer.step() #進行單次優化running_loss += loss.datarunning_correct += torch.sum(pred == y_train.data)testing_correct = 0for data in data_loader_test:X_test, y_test = dataX_test, y_test = Variable(X_test), Variable(y_test)outputs = model(X_test)_, pred = torch.max(outputs.data, 1)testing_correct += torch.sum(pred == y_test.data)print("Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}".format(running_loss/len(data_train),100*running_correct/len(data_train),100*testing_correct/len(data_test))) torch.save(model.state_dict(), "model_parameter.pkl")

reference resources

  • https://paperswithcode.com/sota/keypoint-detection-on-coco-test-dev

總結

以上是生活随笔為你收集整理的七月在线 《关键点检测概览与环境配置》的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。