代码实现——MapReduce实现Hadoop序列化
簡單介紹
1、什么是序列化
- 序列化:把內(nèi)存中的對象,轉(zhuǎn)換成字節(jié)序列(或其他數(shù)據(jù)傳輸協(xié)議)以便于存儲到磁盤(持久化)和網(wǎng)絡(luò)傳輸。
- 反序列化:將收到字節(jié)序列(或其他數(shù)據(jù)傳輸協(xié)議)或者是磁盤的持久化數(shù)據(jù),轉(zhuǎn)換成內(nèi)存中的對象。
2、 為什么要序列化
對象的序列化(Serialization)用于將對象編碼成一個字節(jié)流,以及從字節(jié)流中重新構(gòu)建對象。"將一個對象編碼成一個字節(jié)流"稱為序列化該對象(SeTializing);相反的處理過程稱為反序列化(Deserializing)。 序列化有三種主要的用途:
作為一種持久化格式:一個對象被序列化以后,它的編碼可以被存儲到磁盤上,供以后反序列化用。
作為一種通信數(shù)據(jù)格式:序列化結(jié)果可以從一個正在運(yùn)行的虛擬機(jī),通過網(wǎng)絡(luò)被傳遞到另一個虛擬機(jī)上。
作為一種拷貝、克隆(clone)機(jī)制:將對象序列化到內(nèi)存的緩存區(qū)中。然后通過反序列化,可以得到一個對已存對象進(jìn)行深拷貝的新對象。
在分布式數(shù)據(jù)處理中,主要使用上面提到的前兩種功能:數(shù)據(jù)持久化和通信數(shù)據(jù)格式
需求
統(tǒng)計(jì)每一個手機(jī)號耗費(fèi)的總上行流量、下行流量、總流量(txt文檔在/Users/lizhengi/test/input/目錄下)
1 13736230513 192.196.2.1 www.shouhu.com 2481 24681 200 2 13846544121 192.196.2.2 264 0 200 3 13956435636 192.196.2.3 132 1512 200 4 13966251146 192.168.2.1 240 0 404 5 18271575951 192.168.2.2 www.shouhu.com 1527 2106 200 6 18240717138 192.168.2.3 www.hao123.com 4116 1432 200 7 13590439668 192.168.2.4 1116 954 200 8 15910133277 192.168.2.5 www.hao123.com 3156 2936 200 9 13729199489 192.168.2.6 240 0 200 10 13630577991 192.168.2.7 www.shouhu.com 6960 690 200 11 15043685818 192.168.2.8 www.baidu.com 3659 3538 200 12 15959002129 192.168.2.9 www.hao123.com 1938 180 500 13 13560439638 192.168.2.10 918 4938 200 14 13470253144 192.168.2.11 180 180 200 15 13682846555 192.168.2.12 www.qq.com 1938 2910 200 16 13992314666 192.168.2.13 www.gaga.com 3008 3720 200 17 13509468723 192.168.2.14 www.qinghua.com 7335 110349 404 18 18390173782 192.168.2.15 www.sogou.com 9531 2412 200 19 13975057813 192.168.2.16 www.baidu.com 11058 48243 200 20 13768778790 192.168.2.17 120 120 200 21 13568436656 192.168.2.18 www.alibaba.com 2481 24681 200 22 13568436656 192.168.2.19 1116 954 200實(shí)現(xiàn)過程
1、新建Maven工程,pom.xml依賴如下
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.lizhengi</groupId><artifactId>Hadoop-API</artifactId><version>1.0-SNAPSHOT</version><dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>RELEASE</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>2.8.2</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.2.1</version></dependency></dependencies></project>2、src/main/resources目錄下,新建一個文件,命名為“l(fā)og4j.properties”,添加內(nèi)容如下
log4j.rootLogger=INFO, stdout log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n log4j.appender.logfile=org.apache.log4j.FileAppender log4j.appender.logfile.File=target/spring.log log4j.appender.logfile.layout=org.apache.log4j.PatternLayout log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n3、編寫B(tài)ean類-FlowBean
package com.lizhengi.flow;import org.apache.hadoop.io.Writable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;/*** @author lizhengi* @create 2020-07-20*/ // 1 實(shí)現(xiàn)writable接口 public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //總流量//2 反序列化時,需要反射調(diào)用空參構(gòu)造函數(shù),所以必須有public FlowBean() {}@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}public void set(long upFlow, long downFlow) {this.upFlow = upFlow;this.downFlow = downFlow;this.sumFlow = upFlow + downFlow;}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}//3 寫序列化方法public void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}//4 反序列化方法//5 反序列化方法讀順序必須和寫序列化方法的寫順序必須一致public void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();}}4、編寫Mapper類-FlowMapper
package com.lizhengi.flow;import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author lizhengi* @create 2020-07-20*/ public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {private Text phone = new Text();private FlowBean flow = new FlowBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String[] fields = value.toString().split("\t");phone.set(fields[1]);long upFlow = Long.parseLong(fields[fields.length - 3]);long downFlow = Long.parseLong(fields[fields.length - 2]);flow.set(upFlow,downFlow);context.write(phone, flow);} }5、編寫Reducer類-FlowReducer
package com.lizhengi.flow;import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer;/*** @author lizhengi* @create 2020-07-20*/ public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {private FlowBean sunFlow = new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context)throws IOException, InterruptedException {long sum_upFlow = 0;long sum_downFlow = 0;// 1 遍歷所用bean,將其中的上行流量,下行流量分別累加for (FlowBean value : values) {sum_upFlow += value.getUpFlow();sum_downFlow += value.getDownFlow();}// 2 封裝對象sunFlow.set(sum_upFlow, sum_downFlow);// 3 寫出context.write(key, sunFlow);} }6、編寫Drvier類-FlowDriver
package com.lizhengi.flow;/*** @author lizhengi* @create 2020-07-20*/import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class FlowDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {// 1 獲取job實(shí)例Job job = Job.getInstance(new Configuration());// 2.設(shè)置類路徑job.setJarByClass(FlowDriver.class);// 3 指定本業(yè)務(wù)job要使用的mapper/Reducer業(yè)務(wù)類job.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);// 4 指定mapper輸出數(shù)據(jù)的kv類型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);// 5 指定最終輸出的數(shù)據(jù)的kv類型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);// 6 指定job的輸入原始文件所在目錄FileInputFormat.setInputPaths(job, "/Users/marron27/test/input");FileOutputFormat.setOutputPath(job, new Path("/Users/marron27/test/output"));//FileInputFormat.setInputPaths(job, new Path(args[0]));//FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7 將job中配置的相關(guān)參數(shù),以及job所用的java類所在的jar包, 提交給yarn去運(yùn)行boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);} }結(jié)果展示
Carlota:output marron27$ pwd /Users/marron27/test/output Carlota:output marron27$ cat part-r-00000 13470253144 180 180 360 13509468723 7335 110349 117684 13560439638 918 4938 5856 13568436656 3597 25635 29232 13590439668 1116 954 2070 13630577991 6960 690 7650 13682846555 1938 2910 4848 13729199489 240 0 240 13736230513 2481 24681 27162 13768778790 120 120 240 13846544121 264 0 264 13956435636 132 1512 1644 13966251146 240 0 240 13975057813 11058 48243 59301 13992314666 3008 3720 6728 15043685818 3659 3538 7197 15910133277 3156 2936 6092 15959002129 1938 180 2118 18240717138 4116 1432 5548 18271575951 1527 2106 3633 18390173782 9531 2412 11943總結(jié)
以上是生活随笔為你收集整理的代码实现——MapReduce实现Hadoop序列化的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Docker使用-Hello World
- 下一篇: 创造型模式——建造者模式