日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

哈佛大学单细胞课程|笔记汇总 (二)

發(fā)布時間:2025/3/15 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 哈佛大学单细胞课程|笔记汇总 (二) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

生物信息學(xué)習(xí)的正確姿勢

NGS系列文章包括NGS基礎(chǔ)、轉(zhuǎn)錄組分析?(Nature重磅綜述|關(guān)于RNA-seq你想知道的全在這)、ChIP-seq分析?(ChIP-seq基本分析流程)、單細(xì)胞測序分析?(重磅綜述:三萬字長文讀懂單細(xì)胞RNA測序分析的最佳實踐教程 (原理、代碼和評述))、DNA甲基化分析、重測序分析、GEO數(shù)據(jù)挖掘(典型醫(yī)學(xué)設(shè)計實驗GEO數(shù)據(jù)分析 (step-by-step) - Limma差異分析、火山圖、功能富集)、批次處理等內(nèi)容。

哈佛大學(xué)單細(xì)胞課程|筆記匯總 (一)

(二)Single-cell RNA-seq data - raw data to count matrix

根據(jù)所用文庫制備方法的不同,RNA序列(也被稱為reads或tag)將從轉(zhuǎn)錄本((10X Genomics, CEL-seq2, Drop-seq, inDrops)的3'端(或5'端)或全長轉(zhuǎn)錄本(Smart-seq)中獲得。

Image credit: Papalexi E and Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity, Nature Reviews Immunology 2018 (https://doi.org/10.1038/nri.2017.76)

不同測序方式的優(yōu)點

3’(或5’)末端測序

  • 通過使用UMI進(jìn)行更準(zhǔn)確的定量,從而將生物學(xué)重復(fù)與擴(kuò)增重復(fù)(PCR)區(qū)別開來;

  • 測序的細(xì)胞數(shù)量更多,可以更好地鑒定細(xì)胞類型群;

  • 每個細(xì)胞成本更低;

  • 大于10,000個細(xì)胞的結(jié)果最佳

全長測序

  • 檢測亞型水平(isoform-level)表達(dá)差異;

  • 鑒定等位基因特異性差異表達(dá);

  • 對較少數(shù)量的細(xì)胞進(jìn)行更深的測序;

  • 最適用于細(xì)胞數(shù)少的樣品。

我們將主要介紹3’端測序,重點是基于液滴的方法 (inDrops, Drop-seq, 10X Genomics)。

3’-end reads (includes all droplet-based methods)

在3’端測序中,同一轉(zhuǎn)錄本的不同reads片段僅會源自轉(zhuǎn)錄本的3’端,相同序列的可能性很高,同時在建庫過程中的PCR步驟可能導(dǎo)致reads的重復(fù),因此為了區(qū)分是生物學(xué)還是技術(shù)上的重復(fù),我們使用唯一標(biāo)識符(unique molecular identifiers,UMI)進(jìn)行標(biāo)注。

  • 比對到相同的轉(zhuǎn)錄本、UMI不同的reads來源于不同的分子,為正常生物轉(zhuǎn)錄,每個read都被計數(shù)。

  • UMI相同的reads來自同一分子,為技術(shù)重復(fù),計為1個read。

  • 上面兩條描述是理想情況,方便理解,實際處理起來要復(fù)雜一些。

我們以下圖為例,下圖中分子ACTB的UMI均相同,因此只能記為1個molecule,而ARL1的UMI不同所以可以記為2個molecule。

Image credit: modified from Macosko EZ et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets, Cell 2015 (https://doi.org/10.1016/j.cell.2015.05.002)_

在細(xì)胞水平進(jìn)行正確定量都需要以下條件:

  • Sample index: 樣本來源

    • Added during library preparation - needs to be documented

  • Cellular barcode: 細(xì)胞來源

    • Each library preparation method has a stock of cellular barcodes used during the library preparation

  • Unique molecular identifier (UMI): 轉(zhuǎn)錄本來源

    • The UMI will be used to collapse PCR duplicates

  • Sequencing read1: the Read1 sequence

  • Sequencing read2: the Read2 sequence

例如,使用inDrops v3庫準(zhǔn)備方法時,以下內(nèi)容是reads的所有信息:

Image credit: Sarah Boswell(https://scholar.harvard.edu/saboswell), Director of the Single Cell Sequencing Core at HMS_

  • R1 (61 bp Read 1): sequence of the read (Red top arrow)

  • R2 (8 bp Index Read 1 (i7)): cellular barcode - which cell read originated from (Purple top arrow)

  • R3 (8 bp Index Read 2 (i5)): sample/library index - which sample read originated from (Red bottom arrow)

  • R4 (14 bp Read 2): read 2 and remaining cellular barcode and UMI - which transcript read originated from (Purple bottom arrow)

對于不同的基于液滴的scRNA-seq方法,scRNA-seq的分析工作流程相似,但是UMI、細(xì)胞ID和樣品索引的解析會有所不同。例如,以下是10X序列reads的示意圖,其中index,UMI和barcode的位置不同 :

Image credit: Sarah Boswell(https://scholar.harvard.edu/saboswell), Director of the Single Cell Sequencing Core at HMS_

Single-cell RNA-seq workflow

scRNA-seq方法能通過測序的reads解析barcodes和UMI,它們在特定步驟里會輕微地不同,但除了方法外,大致流程都是一致的,常規(guī)工作流程如下所示:

Image credit: Luecken, MD and Theis, FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial, Mol Syst Biol 2019 (doi: https://doi.org/10.15252/msb.20188746) 中文解讀見:重磅綜述:三萬字長文讀懂單細(xì)胞RNA測序分析的最佳實踐教程 (原理、代碼和評述)

工作流程的步驟是:

  • 生成count矩陣(method-specific steps):

    reads格式化,對樣本進(jìn)行多路分解(demultiplexing,即通過barcodes確定reads的來源),比對和定量。

  • 原始count的質(zhì)量控制:

    過濾質(zhì)量較差的細(xì)胞。

  • 細(xì)胞聚類:

    基于轉(zhuǎn)錄活性的相似性對細(xì)胞進(jìn)行聚類(細(xì)胞類型數(shù)=簇數(shù))?

  • marker識別:

    識別每個cluster的標(biāo)記基因。

  • 可選的下游步驟。

無論進(jìn)行那種分析,生物學(xué)重復(fù)都是必要的!

Generation of count matrix

我們聚焦于基于液滴型的3’端測序(比如inDrops、10X Genomics和Drop-seq),將原始測序數(shù)據(jù)轉(zhuǎn)換為count矩陣。

測序工具將以BCL或FASTQ格式輸出原始測序數(shù)據(jù),或生成count矩陣。如果reads是BCL格式,我們將需要轉(zhuǎn)換為FASTQ格式。有一個有用的命令行工具bcl2fastq,可以輕松執(zhí)行此轉(zhuǎn)換。

NOTE: We do not demultiplex at this step in the workflow. You may have sequenced 6 samples, but the reads for all samples may be present all in the same BCL or FASTQ file.

對于許多scRNA-seq方法,從原始測序數(shù)據(jù)中生成count矩陣都將經(jīng)歷相似的步驟。

umis(https://github.com/vals/umis)和`zUMIs`(https://github.com/vals/umis)是命令行工具,可用于估計測轉(zhuǎn)錄本3'端的scRNA-seq數(shù)據(jù)的表達(dá)。此過程中的步驟包括:

  • 格式化reads并過濾嘈雜的細(xì)胞barcodes;

  • Demultiplexing the samples(通過barcodes確定reads的來源);

  • 比對/偽比對到轉(zhuǎn)錄本;

  • 折疊UMI和定量reads。

  • 當(dāng)然,如果使用10X Genomics建庫方法,Cell Ranger pipeline(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger)將負(fù)責(zé)執(zhí)行以上的所有步驟 (10X單細(xì)胞測序分析軟件:Cell ranger,從拆庫到定量)。

    格式化reads并過濾非細(xì)胞barcodes

    FASTQ文件能解析得到細(xì)胞barcodes、UMIs和樣本barcodes。對于基于液滴型的方法,一些細(xì)胞barcodes會對應(yīng)的低的reads數(shù)(< 1000 reads) ,原因是:

    • encapsulation of free floating RNA from dying cells

    • simple cells (RBCs, etc.) expressing few genes

    • cells that failed for some reason 在比對reads之前,需要從序列數(shù)據(jù)中過濾掉多余的條形碼。

      為了進(jìn)行這種過濾,提取并保存每個細(xì)胞的“細(xì)胞條形碼”和“分子條形碼”。

      例如,如果使用“umis”工具,則信息將以以下格式添加到每條reads的標(biāo)題行中 (NGS基礎(chǔ) - FASTQ格式解釋和質(zhì)量評估):

    @HWI-ST808:130:H0B8YADXX:1:1101:2088:2222:CELL_GGTCCA:UMI_CCCT AGGAAGATGGAGGAGAGAAGGCGGTGAAAGAGACCTGTAAAAAGCCACCGN + @@@DDBD>=AFCF+<CAFHDECII:DGGGHGIGGIIIEHGIIIGIIDHII#

    建庫中使用的細(xì)胞條形碼應(yīng)該是已知的,未知的條形碼會被丟棄,同時對于已知的細(xì)胞條形碼允許一定的錯配。

    Demultiplexing the samples

    如果測序多于一個樣品執(zhí)行此步驟,這是一步不由“umis”工具處理,而由“zUMIs”完成的步驟,這步會解析reads以確定與每個與細(xì)胞相關(guān)的樣本條形碼。

    比對/偽比對到轉(zhuǎn)錄

    通過傳統(tǒng)(STAR)或輕量型(Kallisto/RapMap)方法,將reads比對回基因。

    折疊UMI和定量reads

    使用Kallisto或featureCounts之類的工具僅對唯一的UMI進(jìn)行量化,得到

    Image credit: extracted from Lafzi et al. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies, Nature Protocols 2018 (https://doi.org/10.1038/s41596-018-0073-y)

    矩陣中的每個值代表源自相應(yīng)基因在各個細(xì)胞中的reads數(shù)。

    往期精品(點擊圖片直達(dá)文字對應(yīng)教程)

    后臺回復(fù)“生信寶典福利第一波”或點擊閱讀原文獲取教程合集

    總結(jié)

    以上是生活随笔為你收集整理的哈佛大学单细胞课程|笔记汇总 (二)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 九九综合九九综合 | 视频成人免费 | 亚洲成人看片 | 朱竹清到爽高潮痉挛 | 欧美呦呦 | 国产在线不卡av | 香蕉久久国产 | 欧美激情视频一区二区三区在线播放 | 91亚瑟 | 人体裸体bbbbb欣赏 | 精品在线视频一区二区三区 | 日本污网站 | 天天看视频 | 日韩三区视频 | 中文字幕精品久久久 | 在线播放成人av | 欧美性猛交乱大交3 | 日韩aa| 国产亚洲综合av | www.操.com | 欧美熟妇精品一区二区 | 精彩久久| 久久久久久久久免费看无码 | 在线观看一二区 | 亚洲国产精品狼友在线观看 | 国产精品无码成人网站视频 | 欧美人与性动交α欧美片 | 五月天婷婷网站 | 老色批影院 | 日本成人黄色 | 17c在线观看视频 | 精品欧美国产 | 一级片手机在线观看 | 亚洲va久久久噜噜噜久久天堂 | 蜜桃av噜噜 | 亚洲av无码一区二区二三区软件 | 久久精品一级片 | 欧美呦交 | 国产69精品麻豆 | 97se亚洲国产综合在线 | 日日干干| 欧美一区二区三区免 | xxxx在线播放 | youjizz欧美 | 一节黄色片 | 大黄一级片| 老司机精品视频在线 | 久久免费激情视频 | 中文字幕在线视频第一页 | 91黑人精品一区二区三区 | 就去色av| 床戏高潮做进去大尺度视频 | 91老女人 | 亚洲色成人一区二区三区小说 | 美女草逼视频 | 亚洲三级视频 | 日韩有码视频在线 | 国产免费一区 | 成a人片亚洲日本久久 | 18女人毛片 | 欧日韩不卡在线视频 | 一级黄色免费大片 | 欧美精品影院 | 涩涩视频在线观看免费 | 一级片久久久 | 男人私人影院 | 97se在线视频 | 99精品无码一区二区 | 国产日韩在线视频 | 一区视频在线播放 | 九九天堂 | 91美女视频网站 | 超碰cc| 天堂精品久久 | 性少妇mdms丰满hdfilm | 天天舔天天射天天干 | 人妻天天爽夜夜爽一区二区三区 | 天天干天天天天 | 精品人妻无码一区二区三区蜜桃一 | 丰满肥臀噗嗤啊x99av | 国产亚洲制服 | 欧美偷拍另类 | 亚洲高清av在线 | 国产精品乱子伦 | 51国产偷自视频区视频 | 香蕉久久久久久久av网站 | 欧美视频自拍偷拍 | 无码精品国产一区二区三区 | 日本捏奶吃奶的视频 | 欧美性猛交bbbbb精品 | 欧美激情一级精品国产 | 就去色综合 | 色欲一区二区三区精品a片 在线观看黄网站 | 久久性av| 男生操女生在线观看 | 噜噜色网 | 成人激情电影在线观看 | 亚洲黄色在线观看 | 久色视频|