日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 循环神经网络 >内容正文

循环神经网络

实验matlab计算30,计算方法实验结果及Matlab程序

發布時間:2025/3/19 循环神经网络 51 豆豆
生活随笔 收集整理的這篇文章主要介紹了 实验matlab计算30,计算方法实验结果及Matlab程序 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Lagrange插值計算結果

1-1

n

x

0.75

1.75

2.75

3.75

4.75

5

0.5290

0.3733

0.1537

-0.0260

-0.0157

10

0.6790

0.1906

0.2156

-0.2315

1.9236

20

0.6368

0.2384

0.0807

-0.4471

-39.9524

1-2

n

x

-0.95

-0.05

0.05

0.95

5

0.3868

0.9512

1.0513

2.5858

10

0.3867

0.9512

1.0513

2.5857

20

0.3867

0.9512

1.0513

2.5857

2-1

n

x

-0.95

-0.05

0.05

0.95

5

0.5171

0.9928

0.9928

0.5171

10

0.5264

0.9975

0.9975

0.5264

20

0.5256

0.9975

0.9975

0.5256

2-2

n

x

-4.75

-0.25

0.25

4.75

5

1.1470

1.3022

1.8412

119.6210

10

-0.0020

0.7787

1.2841

115.6074

20

0.0087

0.7788

1.2840

115.5843

3-1

n

x

-0.95

-0.05

0.05

0.95

5

0.5239

0.9879

0.9879

0.5239

10

0.5257

0.9975

0.9975

0.5257

20

0.5256

0.9975

0.9975

0.5256

3-2

n

x

-0.95

-0.05

0.05

0.95

5

0.3868

0.9513

1.0513

2.5857

10

0.3867

0.9512

1.0513

2.5857

20

0.3867

0.9512

1.0513

2.5857

4-1

節點x

5

50

115

185

[1,4,9]

2.2667

-20.2333

-171.9000

-492.7333

[36,49,64]

3.1158

7.0718

10.1670

10.0388

[100,121,144]

4.4391

7.2850

10.7228

13.5357

[169,196,225]

5.4972

7.8001

10.8005

13.6006

Rungkuta4計算結果

>>

f=@f2;

1-1

1-2

>>

Rungkuta4(f,0,1,5,-1)

x=0.200000

y=-1.200000

x=0.400000

y=-1.400000

x=0.600000

y=-1.600000

x=0.800000

y=-1.800000

x=1.000000

y=-2.000000

>>

Rungkuta4(f,0,1,10,-1)

x=0.100000

y=-1.100000

x=0.200000

y=-1.200000

x=0.300000

y=-1.300000

x=0.400000

y=-1.400000

x=0.500000

y=-1.500000

x=0.600000

y=-1.600000

x=0.700000

y=-1.700000

x=0.800000

y=-1.800000

x=0.900000

y=-1.900000

x=1.000000

y=-2.000000

>>

Rungkuta4(f,0,1,20,-1)

x=0.050000

y=-1.050000

x=0.100000

y=-1.100000

x=0.150000

y=-1.150000

x=0.200000

y=-1.200000

x=0.250000

y=-1.250000

x=0.300000

y=-1.300000

x=0.350000

y=-1.350000

x=0.400000

y=-1.400000

x=0.450000

y=-1.450000

x=0.500000

y=-1.500000

x=0.550000

y=-1.550000

x=0.600000

y=-1.600000

x=0.650000

y=-1.650000

x=0.700000

y=-1.700000

x=0.750000

y=-1.750000

x=0.800000

y=-1.800000

x=0.850000

y=-1.850000

x=0.900000

y=-1.900000

x=0.950000

y=-1.950000

x=1.000000

y=-2.000000

>>

Rungkuta4(f,0,1,5,1)

x=0.200000

y=0.833339

x=0.400000

y=0.714292

x=0.600000

y=0.625006

x=0.800000

y=0.555561

x=1.000000

y=0.500004

>>

Rungkuta4(f,0,1,10,1)

x=0.100000

y=0.909091

x=0.200000

y=0.833334

x=0.300000

y=0.769231

x=0.400000

y=0.714286

x=0.500000

y=0.666667

x=0.600000

y=0.625000

x=0.700000

y=0.588236

x=0.800000

y=0.555556

x=0.900000

y=0.526316

x=1.000000

y=0.500000

>>

Rungkuta4(f,0,1,20,1)

x=0.050000

y=0.952381

x=0.100000

y=0.909091

x=0.150000

y=0.869565

x=0.200000

y=0.833333

x=0.250000

y=0.800000

x=0.300000

y=0.769231

x=0.350000

y=0.740741

x=0.400000

y=0.714286

x=0.450000

y=0.689655

x=0.500000

y=0.666667

x=0.550000

y=0.645161

x=0.600000

y=0.625000

x=0.650000

y=0.606061

x=0.700000

y=0.588235

x=0.750000

y=0.571429

x=0.800000

y=0.555556

x=0.850000

y=0.540541

x=0.900000

y=0.526316

x=0.950000

y=0.512821

x=1.000000

y=0.500000

2-1

2-2

>>

Rungkuta4(f,1,3,5,0)

x=1.400000

y=2.613943

x=1.800000

y=10.776313

x=2.200000

y=30.491654

x=2.600000

y=72.585599

x=3.000000

y=156.225198

>>

Rungkuta4(f,1,3,10,0)

x=1.200000

y=0.866379

x=1.400000

y=2.619741

x=1.600000

y=5.719895

x=1.800000

y=10.792018

x=2.000000

y=18.680852

x=2.200000

y=30.521598

x=2.400000

y=47.832366

x=2.600000

y=72.634504

x=2.800000

y=107.608852

x=3.000000

y=156.298257

>>

Rungkuta4(f,1,3,20,0)

x=1.100000

y=0.345910

x=1.200000

y=0.866622

x=1.300000

y=1.607181

x=1.400000

y=2.620311

x=1.500000

y=3.967602

x=1.600000

y=5.720879

x=1.700000

y=7.963772

x=1.800000

y=10.793502

x=1.900000

y=14.322936

x=2.000000

y=18.682927

x=2.100000

y=24.024989

x=2.200000

y=30.524356

x=2.300000

y=38.383459

x=2.400000

y=47.835905

x=2.500000

y=59.151004

x=2.600000

y=72.638926

x=2.700000

y=88.656573

x=2.800000

y=107.614264

x=2.900000

y=129.983333

x=3.000000

y=156.304772

>>

Rungkuta4(f,1,3,5,-2)

x=1.400000

y=-1.553989

x=1.800000

y=-1.383617

x=2.200000

y=-1.293402

x=2.600000

y=-1.237540

x=3.000000

y=-1.199548

>>

Rungkuta4(f,1,3,10,-2)

x=1.200000

y=-1.714245

x=1.400000

y=-1.555523

x=1.600000

y=-1.454520

x=1.800000

y=-1.384595

x=2.000000

y=-1.333316

x=2.200000

y=-1.294103

x=2.400000

y=-1.263145

x=2.600000

y=-1.238084

x=2.800000

y=-1.217381

x=3.000000

y=-1.199991

>>

Rungkuta4(f,1,3,20,-2)

x=1.100000

y=-1.833333

x=1.200000

y=-1.714285

x=1.300000

y=-1.625000

x=1.400000

y=-1.555555

x=1.500000

y=-1.500000

x=1.600000

y=-1.454545

x=1.700000

y=-1.416666

x=1.800000

y=-1.384615

x=1.900000

y=-1.357143

x=2.000000

y=-1.333333

x=2.100000

y=-1.312500

x=2.200000

y=-1.294117

x=2.300000

y=-1.277778

x=2.400000

y=-1.263158

x=2.500000

y=-1.250000

x=2.600000

y=-1.238095

x=2.700000

y=-1.227273

x=2.800000

y=-1.217391

x=2.900000

y=-1.208333

x=3.000000

y=-1.200000

3-1

3-2

3-3

>>

Rungkuta4(f,0,1,5,1/3)

x=0.200000

y=1.760000

x=0.400000

y=8.813333

x=0.600000

y=43.680000

x=0.800000

y=217.293333

x=1.000000

y=1084.320000

>>

Rungkuta4(f,0,1,10,1/3)

x=0.100000

y=0.122778

x=0.200000

y=0.079259

x=0.300000

y=0.104753

x=0.400000

y=0.166584

x=0.500000

y=0.253861

x=0.600000

y=0.362954

x=0.700000

y=0.492651

x=0.800000

y=0.642550

x=0.900000

y=0.812517

x=1.000000

y=1.002506

>>

Rungkuta4(f,0,1,20,1/3)

x=0.050000

y=0.127552

x=0.100000

y=0.056947

x=0.150000

y=0.040157

x=0.200000

y=0.046673

x=0.250000

y=0.065055

x=0.300000

y=0.091010

x=0.350000

y=0.122931

x=0.400000

y=0.160214

x=0.450000

y=0.202632

x=0.500000

y=0.250102

x=0.550000

y=0.302590

x=0.600000

y=0.360086

x=0.650000

y=0.422584

x=0.700000

y=0.490084

x=0.750000

y=0.562583

x=0.800000

y=0.640083

x=0.850000

y=0.722583

x=0.900000

y=0.810083

x=0.950000

y=0.902583

x=1.000000

y=1.000083

>>

Rungkuta4(f,0,1,5,1)

x=0.200000

y=5.197338

x=0.400000

y=25.376171

x=0.600000

y=125.486815

x=0.800000

y=625.312096

x=1.000000

y=3123.795151

>>

Rungkuta4(f,0,1,10,1)

x=0.100000

y=0.433139

x=0.200000

y=0.309660

x=0.300000

y=0.332325

x=0.400000

y=0.401414

x=0.500000

y=0.483074

x=0.600000

y=0.565435

x=0.700000

y=0.643989

x=0.800000

y=0.716722

x=0.900000

y=0.782499

x=1.000000

y=0.840526

>>

Rungkuta4(f,0,1,20,1)

x=0.050000

y=0.424979

x=0.100000

y=0.240456

x=0.150000

y=0.202168

x=0.200000

y=0.218439

x=0.250000

y=0.254812

x=0.300000

y=0.298291

x=0.350000

y=0.343929

x=0.400000

y=0.389795

x=0.450000

y=0.435096

x=0.500000

y=0.479463

x=0.550000

y=0.522688

x=0.600000

y=0.564629

x=0.650000

y=0.605166

x=0.700000

y=0.644194

x=0.750000

y=0.681613

x=0.800000

y=0.717328

x=0.850000

y=0.751251

x=0.900000

y=0.783296

x=0.950000

y=0.813383

x=1.000000

y=0.841437

>>

Rungkuta4(f,0,1,5,0)

x=0.200000

y=0.298646

x=0.400000

y=0.927220

x=0.600000

y=2.835477

x=0.800000

y=10.710885

x=1.000000

y=47.941446

>>

Rungkuta4(f,0,1,10,0)

x=0.100000

y=0.112055

x=0.200000

y=0.245117

x=0.300000

y=0.401778

x=0.400000

y=0.584097

x=0.500000

y=0.793822

x=0.600000

y=1.032418

x=0.700000

y=1.301015

x=0.800000

y=1.600321

x=0.900000

y=1.930521

x=1.000000

y=2.291157

>>

Rungkuta4(f,0,1,20,0)

x=0.050000

y=0.052595

x=0.100000

y=0.110409

x=0.150000

y=0.173709

x=0.200000

y=0.242749

x=0.250000

y=0.317772

x=0.300000

y=0.399014

x=0.350000

y=0.486702

x=0.400000

y=0.581054

x=0.450000

y=0.682276

x=0.500000

y=0.790556

x=0.550000

y=0.906069

x=0.600000

y=1.028968

x=0.650000

y=1.159384

x=0.700000

y=1.297422

x=0.750000

y=1.443157

x=0.800000

y=1.596634

x=0.850000

y=1.757860

x=0.900000

y=1.926802

x=0.950000

y=2.103383

x=1.000000

y=2.287480

Newton迭代法計算結果

1-1

1-2

2-1

2-2

Newton(f,1e-6,1e-4,10,pi/4)

ans =

0.739085178106

Newton(f,1e-6,1e-4,10,0.6)

ans =

0.588532742848

Newton(f,1e-6,1e-4,10,0.5)

ans =

0.567143165035

Newton(f,1e-6,1e-4,20,0.5)

ans =

0.566605704128

3-1

>>

Legendre(2)

ans =(3*x^2 - 1)/2

>>

Legendre(3)

ans =(x*(5*x^2 - 3))/2

>>

Legendre(4)

ans =(35*x^4 - 30*x^2 + 3)/8

>>

Legendre(5)

ans =(x*(63*x^4 - 70*x^2 +

15))/8

>>

Legendre(6)

ans =(231*x^6 - 315*x^4 + 105*x^2 -

5)/16

求得零點:

>>

Newton(f,1e-6,1e-6,10,-0.5)

>>

Newton(f,1e-6,1e-6,10,0.5)

>>

Newton(f,1e-6,1e-6,10,0.3)

>>

Newton(f,1e-6,1e-6,10,-0.3)

>>

Newton(f,1e-6,1e-6,10,0.6)

>>

Newton(f,1e-6,1e-6,10,-0.6)

ans

=-0.932469515098

ans

=0.932469515098

ans

=0.238619186084

ans =

-0.238619186084

ans

=0.661209399083

ans =

-0.661209399083

3-2

>>

Chebyshev(2)

ans =2*x^2 - 1

>>

Chebyshev(3)

ans =x*(4*x^2 - 3)

>>

Chebyshev(4)

ans =8*x^4 - 8*x^2 + 1

>>

Chebyshev(5)

ans =x*(16*x^4 - 20*x^2 + 5)

>>

Chebyshev(6)

ans =(2*x^2 - 1)*(16*x^4 - 16*x^2 +

1)

求得零點:

>>

Newton(f,1e-6,1e-6,10,1)

>>

Newton(f,1e-6,1e-6,10,-1)

>>

Newton(f,1e-6,1e-6,10,0.85)

>>

Newton(f,1e-6,1e-6,10,-0.85)

>>

Newton(f,1e-6,1e-6,10,-0.75)

>>

Newton(f,1e-6,1e-6,10,0.75)

ans

=0.965925826291

ans

=-0.965925826291

ans

=0.258819101812

ans

=-0.258819101812

ans

=-0.707106781187

ans

=0.707106781187

3-3

>>

Laguerre(2)

ans =(x^2 - 4*x + 2)/2

>>

Laguerre(3)

ans =-(x^3 - 9*x^2 + 18*x - 6)/6

>>

Laguerre(4)

ans =(x^4 - 16*x^3 + 72*x^2 - 96*x +

24)/24

>>

Laguerre(5)

ans =-(x^5 - 25*x^4 + 200*x^3 - 600*x^2 + 600*x -

120)/120

求得零點:

>>

Newton(f,1e-6,1e-6,10,0.1)

>>

Newton(f,1e-6,1e-6,10,1)

>>

Newton(f,1e-6,1e-6,10,4)

>>

Newton(f,1e-6,1e-6,10,7)

>>

Newton(f,1e-6,1e-6,10,12)

ans

=0.263560319715

ans

=1.41340309772

ans

=3.59642581677

ans

=7.08581000587

ans

=12.6408008443

3-4

>>

Hermite(2)

ans =2*(2*x^2 - 1)

>>

Hermite(3)

ans =4*x*(2*x^2 - 3)

>>

Hermite(4)

ans =4*(4*x^4 - 12*x^2 + 3)

>>

Hermite(5)

ans =8*x*(4*x^4 - 20*x^2 + 15)

>>

Hermite(6)

ans =8*(8*x^6 - 60*x^4 + 90*x^2 -

15)

源代碼:

function

[y0,l]=Lagrange(X,Y,x0)

% X,Y :已知的插值點坐標

% x0 :插值點

% y0 :Lagrange 插值多項式在x0 處的值

%輸入格式:x=-5:2:5;y=1./(1+x.^2);x0=0.75;Lagrange(x,y,x0)

%輸入格式:n=5;k=0:n;x=cos((2*k+1)*pi/(2*(n+1)));y=1./(1+x.^2);x0=-0.05;Lagrange(x,y,x0)

%輸入格式:

x=[1,4,9];y=sqrt(x);x0=5;Lagrange(x,y,x0)

m=length(X);

l=zeros(m,1);

y0=0;

for

i=1:m

l(i)=1;

for

j=1:m

if j~=i

l(i)=l(i)*(x0-X(j))/(X(i)-X(j));

end

end

y0=y0+Y(i)*l(i);

end

示例:

>>

x=-5:2:5;

>>

y=1./(1+x.^2);

>>

x0=0.75;

>>

Lagrange(x,y,x0)

ans =

0.5290

源代碼:

function []

=Rungkuta4(f,a,b,N,y0)

%f是微分方程右端句柄

%a,b是自變量的取值區間[a,b]的端點

%N是區間等分的個數

%y0表初值y(0)

%輸入格式:a=0;b=1;N=5;y0=-1;f=@f2;Rungkuta4(f,a,b,N,y0);

%修改文件f2.m改變微分方程

x0=a;

h=(b-a)/N;

for i=1:N

k1=h*feval_r(f,x0,y0);

k2=h*feval_r(f,x0+h/2,y0+k1/2);

k3=h*feval_r(f,x0+h/2,y0+k2/2);

k4=h*feval_r(f,x0+h,y0+k3);

x1=x0+h;

y1=y0+(k1+2*k2+2*k3+k4)/6;

fprintf('x=%f

y=%f\n',x1,y1);

x0=x1;

y0=y1;

end

f2.m

function f=f2(x,y)

%修改f改變微分方程

f=-20*(y-exp(x)*sin(x))+exp(x)*(sin(x)+cos(x));

示例:

>>

f=@f2;

>>

Rungkuta4(f,0,1,5,0)

x=0.200000

y=0.360871

x=0.400000

y=0.582591

x=0.600000

y=1.250356

x=0.800000

y=1.572875

x=1.000000

y=2.672419

源代碼:

function

x1=Newton(f,e1,e2,N,x0)

%f是方程句柄,

e1,e2是兩個精度

%N為最大迭代次數,

x0為初值

%修改文件f3.m改變方程

flag=1;

for

i=1:N

[F,DF]=feval_r(f,x0);

if(abs(F)

x1=x0;

break;

end

if(abs(DF)

flag=0;

break;

end

x1=x0-F/DF;

Tol=abs(x1-x0);

if(abs(Tol)

break;

end

x0=x1;

end

if(flag==0)

fprintf('計算失敗!');

end

x1=vpa(x1,12);

f3.m

function

[f,d]=f3(x)

f=

cos(x)-x;

d1='

cos(x)-x';

d=subs(diff(d1));%求一次導

Legendre.m:

function

p2=Legendre(n)

syms

x;

p0=1;

p1=x;

for

i=0:n-2

p2=(2*i+3)*x*p1/(i+2)-(i+1)*p0/(i+2);

p0=p1;

p1=p2;

end

p2=factor(p2);

Chebyshev.m:

function

t2=Chebyshev(n)

syms

x;

t0=1;

t1=x;

for

i=0:n-2

t2=2*x*t1-t0;

t0=t1;

t1=t2;

end

t2=factor(t2);

Laguerre.m:

function

l2=Laguerre(n)

syms

x;

l0=1;

l1=-x+1;

for

i=0:n-2

l2=(2*i+3-x)*l1/(i+2)-(i+1)*l0/(i+2);

l0=l1;

l1=l2;

end

l2=factor(l2);

Hermite:

function

h2=Hermite(n)

syms

x;

h0=1;

h1=2*x;

for

i=0:n-2

h2=2*x*h1-2*(i+1)*h0;

h0=h1;

h1=h2;

end

h2=factor(h2);

示例:

>>

f=@f3;

>>

Newton(f,1e-6,1e-4,10,pi/4)

ans =

0.739085178106

總結

以上是生活随笔為你收集整理的实验matlab计算30,计算方法实验结果及Matlab程序的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。