LightOJ 1078 Integer Divisibility (同余定理)
題目:
If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.
For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.
Input
Input starts with an integer?T (≤ 300), denoting the number of test cases.
Each case will contain two integers?n (0 < n ≤ 106?(10的6次方)and?n?will not be divisible by?2?or?5) and the allowable digit?(1 ≤ digit ≤ 9).
Output
For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.
Sample Input
3
3 1
7 3
9901 1
Sample Output
Case 1: 3
Case 2: 6
Case 3: 12
代碼:
#include <iostream> using namespace std; int main() {long long t,n,i,ans,m,tem;cin>>t;ans=1;while(t--){cin>>m>>n;cout<<"Case "<<ans++<<": ";if(n%m==0){cout<<"1"<<endl;continue;}tem=n;for(i=1;n!=0;i++){n=(n*10+tem)%m;}cout<<i<<endl;}return 0; }總結(jié)
以上是生活随笔為你收集整理的LightOJ 1078 Integer Divisibility (同余定理)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 51nod 1513-3的幂的和(费马小
- 下一篇: Light OJ 1214 Large