ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)
ML之回歸預測:利用十類機器學習算法(線性回歸、kNN、SVM、決策樹、隨機森林、極端隨機樹、SGD、提升樹、LightGBM、XGBoost)對波士頓數據集【13+1,506】回歸預測(模型評估、推理并導到csv)
?
?
?
目錄
利用十類機器學習算法(線性回歸、kNN、SVM、決策樹、隨機森林、極端隨機樹、SGD、提升樹、LightGBM、XGBoost)對波士頓數據集【13+1,506】回歸預測(模型評估、推理并導到csv)
輸出數據集
1、LiR 線性回歸算法
2、kNNR k最近鄰算法
3、SVMR 支持向量機算法
4、DTR 決策樹算法
5、RFR 隨機森林算法
6、ExtraTR 極端隨機樹算法
7、SGDR 隨機梯度上升算法
8、GBR 提升樹算法
9、LightGBMR 算法
10、XGBR 算法
模型評估效果綜合比較
模型推理預測綜合比較
?
?
?
?
相關文章
ML之回歸預測:利用十類機器學習算法(線性回歸、kNN、SVM、決策樹、隨機森林、極端隨機樹、SGD、提升樹、LightGBM、XGBoost)對波士頓數據集回歸預測(模型評估、推理并導到csv)
ML之回歸預測:利用十類機器學習算法(線性回歸、kNN、SVM、決策樹、隨機森林、極端隨機樹、SGD、提升樹、LightGBM、XGBoost)對波士頓數據集回歸預測(模型評估、推理并導到csv)實現
利用十類機器學習算法(線性回歸、kNN、SVM、決策樹、隨機森林、極端隨機樹、SGD、提升樹、LightGBM、XGBoost)對波士頓數據集【13+1,506】回歸預測(模型評估、推理并導到csv)
輸出數據集
數據集的描述: .. _boston_dataset:Boston house prices dataset ---------------------------**Data Set Characteristics:** :Number of Instances: 506 :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.:Attribute Information (in order):- CRIM per capita crime rate by town- ZN proportion of residential land zoned for lots over 25,000 sq.ft.- INDUS proportion of non-retail business acres per town- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)- NOX nitric oxides concentration (parts per 10 million)- RM average number of rooms per dwelling- AGE proportion of owner-occupied units built prior to 1940- DIS weighted distances to five Boston employment centres- RAD index of accessibility to radial highways- TAX full-value property-tax rate per $10,000- PTRATIO pupil-teacher ratio by town- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town- LSTAT % lower status of the population- MEDV Median value of owner-occupied homes in $1000's:Missing Attribute Values: None:Creator: Harrison, D. and Rubinfeld, D.L.This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.The Boston house-price data has been used in many machine learning papers that address regression problems. .. topic:: References- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.數據的初步查驗:輸出回歸目標值target的差異 target_max 50.0 target_min 5.0 target_avg 22.532806324110677?
1、LiR 線性回歸算法
LiR Score value: 0.6757955014529482 LiR R2 value: 0.6757955014529482 LiR MAE value: 3.5325325437053974 LiR MSE value: 25.13923652035344?
2、kNNR k最近鄰算法
?
3、SVMR 支持向量機算法
?
?
4、DTR 決策樹算法
?
5、RFR 隨機森林算法
?
6、ExtraTR 極端隨機樹算法
?
7、SGDR 隨機梯度上升算法
?
?
?
8、GBR 提升樹算法
?
?
9、LightGBMR 算法
?
10、XGBR 算法
?
?
模型評估效果綜合比較
?
模型推理預測綜合比較
?
?
?
?
?
?
?
?
?
?
?
?
?
?
總結
以上是生活随笔為你收集整理的ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 成功解决‘nvidia-smi‘ 不是内
- 下一篇: ML之XGBoost:利用XGBoost