日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索

發(fā)布時(shí)間:2025/3/21 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

文章目錄

  • 概述
  • 官網(wǎng)
  • 近似匹配
  • 例子
    • match query
    • match phrase query
    • term position
  • match_phrase的基本原理

概述

繼續(xù)跟中華石杉老師學(xué)習(xí)ES,第17篇

課程地址: https://www.roncoo.com/view/55


官網(wǎng)

https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html


近似匹配

假設(shè)content字段中有2個(gè)語(yǔ)句

java is my favourite programming language, and I also think spark is a very good big data system.java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

使用match query , 搜索java spark ,DSL 大致如下

{"match": {"content": "java spark"} }

content 被拆分為兩個(gè)單詞 java 和 spark去匹配,所以如上兩個(gè)doc都能被查詢出來(lái)。

match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是離的很近. 包含java或包含spark,或包含java和spark的doc,都會(huì)被查詢出來(lái)。我們其實(shí)并不知道哪個(gè)doc,java和spark距離的比較近。

如果我們希望搜索java spark,中間不能插入任何其他的字符, 這個(gè)時(shí)候match就無(wú)能為力了 。

再比如 , 如果我們要盡量讓java和spark離的很近的document優(yōu)先返回,要給它一個(gè)更高的relevance score,這就涉及到了proximity match,近似匹配.


例子

假設(shè)要實(shí)現(xiàn)兩個(gè)需求:

  • java spark,就靠在一起,中間不能插入任何其他字符,就要搜索出來(lái)這種doc
  • java spark,但是要求,java和spark兩個(gè)單詞靠的越近,doc的分?jǐn)?shù)越高,排名越靠前
  • 要實(shí)現(xiàn)上述兩個(gè)需求,用match做全文檢索,是搞不定的,必須得用proximity match,近似匹配

    phrase match:短語(yǔ)匹配
    proximity match:近似匹配


    這里我們要學(xué)習(xí)的是phrase match,就是僅僅搜索出java和spark靠在一起的那些doc,比如有個(gè)doc,是java use’d spark,不行。必須是比如java spark are very good friends,是可以搜索出來(lái)的。

    match phrase query,就是要去將多個(gè)term作為一個(gè)短語(yǔ),一起去搜索,只有包含這個(gè)短語(yǔ)的doc才會(huì)作為結(jié)果返回。

    不像是match query,java spark,java的doc也會(huì)返回,spark的doc也會(huì)返回。


    match query

    為了做比對(duì),我們先看下match query的查詢結(jié)果

    GET /forum/article/_search {"query": {"match": {"content": "java spark"}} }

    返回結(jié)果

    {"took": 40,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": 2,"max_score": 1.8166281,"hits": [{"_index": "forum","_type": "article","_id": "5","_score": 1.8166281,"_source": {"articleID": "DHJK-B-1395-#Ky5","userID": 3,"hidden": false,"postDate": "2019-05-01","tag": ["elasticsearch"],"tag_cnt": 1,"view_cnt": 10,"title": "this is spark blog","content": "spark is best big data solution based on scala ,an programming language similar to java spark","sub_title": "haha, hello world","author_first_name": "Tonny","author_last_name": "Peter Smith","new_author_last_name": "Peter Smith","new_author_first_name": "Tonny"}},{"_index": "forum","_type": "article","_id": "2","_score": 0.7721133,"_source": {"articleID": "KDKE-B-9947-#kL5","userID": 1,"hidden": false,"postDate": "2017-01-02","tag": ["java"],"tag_cnt": 1,"view_cnt": 50,"title": "this is java blog","content": "i think java is the best programming language","sub_title": "learned a lot of course","author_first_name": "Smith","author_last_name": "Williams","new_author_last_name": "Williams","new_author_first_name": "Smith"}}]} }

    可以看到單單包含java的doc也返回了,不是我們想要的結(jié)果 。


    match phrase query

    為了演示match phrase query的功能,我們先調(diào)整一下測(cè)試數(shù)據(jù)

    POST /forum/article/5/_update {"doc": {"content":"spark is best big data solution based on scala ,an programming language similar to java spark"} }

    將id=5的doc的content設(shè)置為恰巧包含java spark這個(gè)短語(yǔ) 。

    GET /forum/article/_search {"query": {"match_phrase": {"content": "java spark"}} }

    返回結(jié)果

    {"took": 47,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": 1,"max_score": 1.4302213,"hits": [{"_index": "forum","_type": "article","_id": "5","_score": 1.4302213,"_source": {"articleID": "DHJK-B-1395-#Ky5","userID": 3,"hidden": false,"postDate": "2019-05-01","tag": ["elasticsearch"],"tag_cnt": 1,"view_cnt": 10,"title": "this is spark blog","content": "spark is best big data solution based on scala ,an programming language similar to java spark","sub_title": "haha, hello world","author_first_name": "Tonny","author_last_name": "Peter Smith","new_author_last_name": "Peter Smith","new_author_first_name": "Tonny"}}]} }

    從結(jié)果中可以看到只有包含java spark這個(gè)短語(yǔ)的doc才返回,只包含java的doc不會(huì)返回


    term position

    分詞后,每個(gè)單詞就是一個(gè)term

    分詞后 , es還記錄了 每個(gè)field的位置。

    舉個(gè)例子 兩個(gè)doc 如下:

    hello world, java spark doc1
    hi, spark java doc2

    建立倒排索引后

    分詞文檔(位置)文檔(位置
    hellodoc1(1)-
    wolrddoc1(1)
    javadoc1(2)doc2(2)
    sparkdoc1(3)doc2(1)
    hidoc2(0)

    可以通過(guò)如下API來(lái)看下

    GET _analyze {"text": "hello world, java spark","analyzer": "standard" }

    返回:

    {"tokens": [{"token": "hello","start_offset": 0,"end_offset": 5,"type": "<ALPHANUM>","position": 0},{"token": "world","start_offset": 6,"end_offset": 11,"type": "<ALPHANUM>","position": 1},{"token": "java","start_offset": 13,"end_offset": 17,"type": "<ALPHANUM>","position": 2},{"token": "spark","start_offset": 18,"end_offset": 23,"type": "<ALPHANUM>","position": 3}] }

    通過(guò)position 可以看到位置信息 。


    match_phrase的基本原理

    理解下索引中的position,match_phrase

    兩個(gè)doc 如下

    hello world, java spark doc1 hi, spark java doc2 分詞文檔(位置)文檔(位置
    hellodoc1(1)-
    wolrddoc1(1)
    javadoc1(2)doc2(2)
    sparkdoc1(3)doc2(1)
    hidoc2(0)

    java spark , 采用match phrase來(lái)查詢

  • 首先 java spark 被拆成 java和spark ,分別取索引中查找

    java 出現(xiàn)在 doc1(2) doc2(2) spark 出現(xiàn)在 doc1(3) doc2(1)
  • 要找到每個(gè)term都在的一個(gè)共有的那些doc,就是要求一個(gè)doc,必須包含每個(gè)term,才能拿出來(lái)繼續(xù)計(jì)算

    doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好滿足條件

    doc1符合條件

    doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不滿足,那么doc2不匹配 .

    總結(jié)

    以上是生活随笔為你收集整理的白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

    如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。