日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Paper】2018_Group Consensus for Discrete-Time Heterogeneous Multiagent Systems with Input and Commun

發(fā)布時間:2025/4/5 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Paper】2018_Group Consensus for Discrete-Time Heterogeneous Multiagent Systems with Input and Commun 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Jiang Y, Ji L, Pu X, et al. Group consensus for discrete-time heterogeneous multiagent systems with input and communication delays[J]. Complexity, 2018, 2018.

文章目錄

  • 1 Introduction
  • 2 Preliminaries and problem statements
    • 2.1 Graph theory and interconnection topology
    • 2.2 Discrete-time heterogeneous multiagent system
  • 3 Main resultes
    • 3.1 Couple-group consensus for discrete-time heterogeneous MASs with multiple time delays under bipartite digraph
    • 3.2 Group consensus for discrete-time heterogeneous MASs with multiple time-delays under digraph with in-degree balance
  • 4 Simulation

1 Introduction

2 Preliminaries and problem statements

2.1 Graph theory and interconnection topology

2.2 Discrete-time heterogeneous multiagent system

Assume the second-order agents are 1,2,?,n1,2,\cdots,n1,2,?,n
xi(k+1)=xi(k)+vi(k)vi(k+1)=vi(k)+ui(k),i∈σ1\begin{aligned} x_i(k+1) &= x_i(k) + v_i(k) \\ v_i(k+1) &= v_i(k) + u_i(k), \quad i \in \sigma_1 \end{aligned}xi?(k+1)vi?(k+1)?=xi?(k)+vi?(k)=vi?(k)+ui?(k),iσ1??

the first-order agents are n+1,n+2,?,n+mn+1, n+2, \cdots, n+mn+1,n+2,?,n+m
xl(k+1)=xl(k)+ul(k),l∈σ2\begin{aligned} x_l(k+1) = x_l(k) + u_l(k), \quad l \in \sigma_2 \end{aligned}xl?(k+1)=xl?(k)+ul?(k),lσ2??

3 Main resultes

3.1 Couple-group consensus for discrete-time heterogeneous MASs with multiple time delays under bipartite digraph

ui(k)=?α[∑j∈Niaij[xj(k?τij)+xi(k?τ)]]?βvi(k?τ),i∈σ1u_\red{i}(k) = - \alpha [\sum_{j \in N_\red{i}} a_{\red{i}j} [x_j(k-\tau_{\red{i}j}) + x_\red{i}(k-\tau)]] - \beta v_\red{i}(k-\tau), \quad \red{i} \in \sigma_1 ui?(k)=?α[jNi??aij?[xj?(k?τij?)+xi?(k?τ)]]?βvi?(k?τ),iσ1?

ul(k)=?γ[∑j∈Nlalj[xj(k?τlj)+xl(k?τ)]],l∈σ2u_\blue{l}(k) = - \gamma [\sum_{j \in N_\blue{l}} a_{\blue{l}j} [x_j(k-\tau_{\blue{l}j}) + x_\blue{l}(k-\tau)]], \quad \blue{l} \in \sigma_2 ul?(k)=?γ[jNl??alj?[xj?(k?τlj?)+xl?(k?τ)]],lσ2?

3.2 Group consensus for discrete-time heterogeneous MASs with multiple time-delays under digraph with in-degree balance

4 Simulation

Example 19

先忽略時滯的情況:

下邊是考慮時滯的情況,首先是 τ1=1,τ2=4.5,τ3=4.5,τ4=4.5,τ5=1,τij=1\tau_1 = 1, \tau_2 = 4.5, \tau_3 = 4.5, \tau_4 = 4.5, \tau_5 = 1, \tau_{ij} = 1τ1?=1,τ2?=4.5,τ3?=4.5,τ4?=4.5,τ5?=1,τij?=1

首先是 τ1=1,τ2=4.5,τ3=4.5,τ4=4.5,τ5=4.5,τij=1\tau_1 = 1, \tau_2 = 4.5, \tau_3 = 4.5, \tau_4 = 4.5, \tau_5 = 4.5, \tau_{ij} = 1τ1?=1,τ2?=4.5,τ3?=4.5,τ4?=4.5,τ5?=4.5,τij?=1

總結

以上是生活随笔為你收集整理的【Paper】2018_Group Consensus for Discrete-Time Heterogeneous Multiagent Systems with Input and Commun的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。