日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

用分类映射的办法分类两条夹角为0.3度的直线

發布時間:2025/4/5 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 用分类映射的办法分类两条夹角为0.3度的直线 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

繼續用《用神經網絡分類兩條夾角為θ的直線》的辦法分類兩條直線

分類兩條直線y=0,和y=x*tanθ,

?

(y=0,y=x*tanθ)—2*2*2—(1,0)(0,1)

?

這個角θ最小可以是多少?

用多次收斂取平均值的辦法去測量θ的極小值。收斂標準有16個,每個收斂標準收斂199次,共嘗試了θ從9到0.04共24個不同的值,一共收斂了24*16*199次。

?

得到的數據

θ

10

9

8

7

6

5

4

3

2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.09

0.08

0.07

0.06

0.05

0.04

δ

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

迭代次數n

0.5

195.3317

225.1256

230.8241

194.0603

260.1055

266.7538

256.6181

229.6633

267.9447

289.0704

266.7387

248.5327

280.6683

260.4322

234.9598

243.9296

269.809

261.4724

251.1106

270.0402

229.0402

256.1709

278.3668

291.3618

242.0503

0.4

13914.29

15650.57

17880.11

20209.6

24517.05

29278.5

36627.75

50957.44

77998.87

146102.9

173566.7

176639.8

189926.5

268967

323366.5

369113.9

420655.1

506942.3

2405873

2719082

2048413

2618378

4197245

5604986

4793757

0.3

15479.9

17332.98

19411.22

22473.04

27185.66

31413.58

41070.88

56023.05

83704.67

167101.1

184933.1

196349.9

215094.5

302524.9

354299.6

425524

478569.6

627099

2659858

2958164

2350955

2951109

4596583

6216997

5870306

0.2

16439.69

18223.97

20808.33

24174.77

28656.78

34997.63

43321.73

58718.62

89682.01

176946.5

196522.5

210620.7

236574.3

320900.7

401429.3

466824.3

531129.9

708706.7

2947430

3181111

2600654

3217961

4930519

6764221

6495452

0.1

17919.78

20062.16

22127.07

26230.42

30405.3

36263.06

46928.16

64122.4

96614.49

188302.3

215432.9

232926.9

259838.2

348587.1

417222

507597

572595

775833.8

3044634

3461076

2901890

3572008

5428360

7544252

7407801

0.01

22466.49

25275.75

27902.76

31928.63

37886.42

46846.11

57167.14

77672.2

115687.6

227748.1

263480.7

282903.4

318950.8

411941.7

508047.8

596253.1

643902.1

900253.2

3453155

3998794

3561226

4625189

6999017

9549422

1.10E+07

0.001

29045.94

32983.77

36326.36

40520.33

47857.63

57341.84

70818.73

94979.9

138107.1

274102.4

310804.6

335353.8

371230.4

473280.1

591728.4

654498.1

666656.9

949862.1

3706353

4318767

4046588

5247215

7728852

1.06E+07

1.22E+07

9.00E-04

29906.22

33366.44

36870.04

41179.77

47855.69

58431.72

71149.74

95579.46

139451.3

273893.8

314116.3

335751.5

379128.4

473682

587273.2

659923.1

666305.3

947896.2

3770298

4399940

4049285

5258015

7771985

1.06E+07

1.23E+07

8.00E-04

30505.62

33537.86

37364.13

42257.77

48099.17

58790.35

71160.06

97090.92

139448.4

281822.7

317464.8

340301.6

379438

482171

596464

669215.8

668917.3

951669.8

3743586

4333233

4065487

5250128

7753600

1.07E+07

1.24E+07

7.00E-04

30878.16

34642.3

37722.57

42657.75

49542.59

59781.34

73130.08

98491.56

141650.7

278769.2

320831.5

342315.5

379415.5

488048.1

598162.9

670672.5

672734.9

955540.8

3751633

4316054

4088694

5266705

7786100

1.07E+07

1.24E+07

6.00E-04

31735.77

35227.77

39393.62

43468.07

50670.44

60220.19

74846.17

98957.79

145869.6

280527.3

327816.6

346098.4

388231.7

491714.9

600249.3

669617.7

674191.6

957925.8

3773483

4346545

4109088

5288656

7937419

1.07E+07

1.25E+07

5.00E-04

32248.65

35900.43

39572.38

44431.86

51824.84

61375.43

75278.8

100319.9

146817.3

285198.8

327349.8

350935.4

388693.3

490760.5

608293.4

675595.2

709016.2

964057.8

3793037

4328763

4118079

5286847

7942442

1.08E+07

1.26E+07

4.00E-04

33464.13

37038.02

40763.43

45555.65

52685.73

63106.96

78705.99

101974

151146.5

290272.2

336662.4

356670.8

402343.9

509597.2

614457.4

692573.3

843940.2

966219

3836588

4353527

4136816

5314274

7984687

1.08E+07

1.27E+07

3.00E-04

34532.6

38848.82

42820.11

47207.83

55192.5

65049.65

80288.21

106443.1

152591.6

297656.1

345275.3

363816.7

410187.4

517031.4

623548.3

693778.8

893810.7

970565.6

3794636

4378692

4176950

5431542

8054188

1.08E+07

1.28E+07

2.00E-04

37157.44

41191.23

44549.33

49365.92

58211.46

68042.21

83957.31

110683.5

159184.3

305492.2

355278.5

375129.8

420971.9

533858.9

653484.1

719698.1

915560.8

981738.1

3855110

4505024

4219496

5479412

8086637

1.08E+07

1.30E+07

1.00E-04

40897.64

44706.82

49418.51

53947.74

62068.7

74072.9

91026.79

118315

171038.4

322420.1

372499.6

393522.3

444940.8

565152.9

660316.6

771687.4

955946.7

997062.7

3887811

4585959

4277563

5558074

8128276

1.10E+07

1.33E+07

??????????????????????????
??????????????????????????
??????????????????????????

0.5

0.675724

0.778792

0.798505

0.671326

0.8998

0.922799

0.887736

0.794489

0.926919

1

0.922747

0.859765

0.970934

0.90093

0.812812

0.843842

0.933368

0.904528

0.868683

0.934168

0.792334

0.886189

0.962973

1.007927

0.83734

0.4

0.095236

0.10712

0.12238

0.138324

0.167807

0.200396

0.250698

0.348778

0.533862

1

1.187976

1.209009

1.29995

1.840942

2.213279

2.526396

2.879169

3.469761

16.46698

18.61073

14.02034

17.92146

28.728

38.36326

32.81082

0.3

0.092638

0.103727

0.116165

0.134488

0.16269

0.187991

0.245785

0.335264

0.500922

1

1.106714

1.175036

1.287212

1.81043

2.120271

2.546506

2.863952

3.752812

15.91766

17.70284

14.06906

17.66062

27.50779

37.205

35.13026

0.2

0.092908

0.102991

0.117597

0.136622

0.161952

0.197787

0.24483

0.331844

0.506831

1

1.110633

1.190307

1.336983

1.813547

2.268648

2.638224

3.001642

4.005204

16.65719

17.97781

14.69741

18.18607

27.86447

38.2275

36.70857

0.1

0.095165

0.106542

0.117508

0.1393

0.161471

0.192579

0.249217

0.340529

0.513082

1

1.14408

1.236984

1.3799

1.85121

2.215704

2.69565

3.040829

4.120151

16.16886

18.38043

15.41081

18.96954

28.82791

40.06458

39.33994

0.01

0.098646

0.110981

0.122516

0.140193

0.166352

0.205693

0.25101

0.341044

0.507963

1

1.156895

1.242177

1.400454

1.80876

2.230744

2.618038

2.827256

3.952846

15.16217

17.55797

15.63669

20.30835

30.73139

41.92975

48.18644

0.001

0.105968

0.120334

0.132528

0.147829

0.174598

0.209199

0.258366

0.346513

0.503852

1

1.1339

1.223462

1.354349

1.726655

2.158786

2.387787

2.432146

3.465355

13.52179

15.75604

14.76305

19.14327

28.19695

38.73537

44.68858

9.00E-04

0.109189

0.121823

0.134614

0.150349

0.174724

0.213337

0.259771

0.348965

0.509144

1

1.146854

1.225845

1.384217

1.729436

2.144164

2.409412

2.432714

3.460816

13.76555

16.0644

14.78414

19.19727

28.37591

38.5603

44.86755

8.00E-04

0.108244

0.119003

0.13258

0.149945

0.170672

0.208608

0.252499

0.344511

0.494809

1

1.12647

1.207502

1.346371

1.710902

2.116451

2.374599

2.373539

3.376839

13.28348

15.37574

14.42569

18.62919

27.51233

38.08589

43.86378

7.00E-04

0.110766

0.124269

0.135318

0.153022

0.177719

0.214447

0.262332

0.353309

0.508129

1

1.150886

1.227953

1.361038

1.750724

2.145728

2.405834

2.413232

3.427713

13.45784

15.48253

14.66695

18.8927

27.93027

38.50134

44.61283

6.00E-04

0.113129

0.125577

0.140427

0.154951

0.180626

0.214668

0.266805

0.352756

0.519984

1

1.168573

1.233742

1.383936

1.752824

2.139718

2.386996

2.403301

3.414733

13.45139

15.49419

14.64773

18.85255

28.29464

38.31549

44.58581

5.00E-04

0.113074

0.125879

0.138754

0.155793

0.181715

0.215202

0.263952

0.351754

0.514789

1

1.147795

1.230494

1.362885

1.720766

2.132875

2.368857

2.486042

3.380301

13.29963

15.17805

14.43933

18.53741

27.84879

37.74883

44.17618

4.00E-04

0.115285

0.127598

0.140432

0.156941

0.181505

0.217406

0.271146

0.351305

0.520706

1

1.159816

1.228746

1.386092

1.755584

2.116832

2.385945

2.90741

3.328666

13.21721

14.99809

14.25151

18.3079

27.50759

37.1753

43.77628

3.00E-04

0.116015

0.130516

0.143858

0.158599

0.185424

0.21854

0.269735

0.357604

0.512644

1

1.159981

1.222272

1.378058

1.737009

2.094861

2.330806

3.00283

3.260694

12.74839

14.71057

14.0328

18.24771

27.0587

36.24465

43.16978

2.00E-04

0.121631

0.134836

0.145828

0.161595

0.19055

0.22273

0.274826

0.362312

0.521075

1

1.162971

1.227952

1.378012

1.747537

2.139119

2.355864

2.997002

3.213627

12.61934

14.74677

13.81212

17.93634

26.47085

35.30276

42.54276

1.00E-04

0.126846

0.13866

0.153274

0.167321

0.192509

0.22974

0.282324

0.366959

0.530483

1

1.155324

1.220526

1.380003

1.752846

2.048001

2.393422

2.96491

3.092433

12.05821

14.22355

13.26705

17.23861

25.2102

34.05152

41.16793

??????????????????????????

average(0.4:1e-4)

0.107649

0.11999

0.132919

0.149685

0.175354

0.209888

0.26022

0.348897

0.513218

1

1.147924

1.220134

1.361297

1.767278

2.152345

2.454956

2.735065

3.514797

14.11971

16.15065

14.46165

18.53527

27.87105

37.90077

41.97517

1/θ

0.1

0.111111

0.125

0.142857

0.166667

0.2

0.25

0.333333

0.5

1

1.111111

1.25

1.428571

1.666667

2

2.5

3.333333

5

10

11.11111

12.5

14.28571

16.66667

20

25

?

迭代次數隨著角度θ的減小而逐漸增加

假設1:完全相同的兩個對象無法被分成兩類,與之對應的分類迭代次數為無窮大,分類準確率是50%,50%。相等收斂標準下迭代次數越大表明二者差異越小。

這一現象可以用假設1解釋,因為θ減小將導致兩條直線趨近重合,并導致差異減小,從而迭代次數增加。

?

另外發現迭代次數在0.4<=θ<=10內有一個非常明顯的規律

θ的迭代次數與當θ=1時的迭代次數的比約為1/θ。

比如當θ=0.6,收斂標準=1e-4時,n0.6的迭代次數實測為565152,用公式估算=322420/0.6=537366誤差約為5%。

?

再觀察分類準確率的數據

?

10

9

8

7

6

5

4

3

2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.09

0.08

0.07

0.06

0.05

0.04

δ

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

平均準確率p-ave

0.5

0.501347

0.500349

0.5

0.500465

0.500181

0.500008

0.500186

0.499902

0.500088

0.500058

0.500417

0.500093

0.499915

0.500043

0.500362

0.499809

0.500028

0.499759

0.500166

0.500101

0.499957

0.500158

0.499889

0.50005

0.500043

0.4

0.965457

0.967872

0.977319

0.965643

0.962161

0.924279

0.849533

0.654043

0.620018

0.529583

0.534296

0.53143

0.515324

0.510666

0.500274

0.500503

0.51903

0.506133

0.495249

0.499899

0.49605

0.486945

0.5

0.497138

0.505809

0.3

0.979269

0.979417

0.984598

0.974613

0.981173

0.97992

0.976807

0.931113

0.772146

0.547513

0.513965

0.530126

0.516329

0.515837

0.502889

0.506289

0.519357

0.5105

0.499106

0.5

0.498055

0.489545

0.504015

0.5

0.503229

0.2

0.98297

0.986837

0.989935

0.979264

0.98855

0.985882

0.977925

0.982726

0.97196

0.645862

0.530299

0.559523

0.512407

0.563915

0.50843

0.513314

0.527407

0.525181

0.514977

0.501131

0.497

0.4995

0.5095

0.497

0.504304

0.1

0.986819

0.991279

0.99349

0.983701

0.991153

0.990673

0.986299

0.986138

0.979013

0.921229

0.929317

0.889746

0.790874

0.971769

0.520312

0.793568

0.5

0.940548

0.4985

0.4995

0.503852

0.5

0.511005

0.504497

0.516148

0.01

0.994842

0.995472

0.996307

0.99146

0.995342

0.995211

0.994942

0.992905

0.989357

0.994261

0.99459

0.992812

0.992616

0.987146

0.997487

0.997111

0.511955

0.541201

0.5

0.5

0.500658

0.874975

0.508

0.5

0.5

0.001

0.995392

0.998774

0.997809

0.992874

0.996284

0.996626

0.996575

0.993472

0.99002

0.997613

0.994103

0.995118

0.995784

0.996

0.99449

0.9985

0.508003

0.5

0.988

0.5

0.501281

0.5

0.5

0.5025

0.5

9.00E-04

0.995389

0.99843

0.99791

0.992389

0.996776

0.996671

0.99693

0.993018

0.990379

0.998018

0.994038

0.995043

0.995731

0.996

0.994515

0.9985

0.507741

0.5

0.988

0.5

0.501274

0.5

0.5

0.5025

0.5

8.00E-04

0.995324

0.99853

0.997563

0.993065

0.997299

0.996771

0.997163

0.993183

0.990204

0.99846

0.994143

0.995349

0.995467

0.996

0.994073

0.9985

0.507603

0.5

0.91201

0.5

0.5015

0.5

0.5

0.5

0.5

7.00E-04

0.99553

0.998462

0.997814

0.993568

0.997216

0.996621

0.997503

0.993161

0.990754

0.999171

0.994422

0.995337

0.995116

0.996

0.994158

0.998646

0.50748

0.5

0.5

0.5

0.5015

0.5

0.5

0.5

0.5

6.00E-04

0.995701

0.998153

0.997477

0.993611

0.997038

0.996734

0.997163

0.993317

0.991601

0.999329

0.994794

0.99507

0.994882

0.996

0.994264

0.999153

0.507442

0.5

0.5

0.5

0.5015

0.5

0.5

0.5

0.5

5.00E-04

0.995807

0.998377

0.997364

0.992163

0.996402

0.996794

0.997319

0.993678

0.991779

0.9995

0.995254

0.995191

0.99497

0.996

0.993719

0.9995

0.581188

0.5

0.5

0.5

0.5015

0.5

0.5

0.5

0.5

4.00E-04

0.996681

0.998332

0.997437

0.99199

0.996595

0.996812

0.997384

0.994161

0.992859

0.9995

0.995364

0.995035

0.995274

0.996

0.993882

0.9995

0.905487

0.5

0.507236

0.5

0.500691

0.5

0.5

0.5

0.5

3.00E-04

0.996693

0.998889

0.99749

0.991543

0.996111

0.996399

0.99751

0.993445

0.992739

0.9995

0.995638

0.994972

0.996121

0.996

0.993704

0.999643

0.9965

0.5

0.961063

0.5

0.5005

0.5

0.5

0.5

0.5

2.00E-04

0.997003

0.999332

0.998131

0.99245

0.996814

0.996565

0.997631

0.993932

0.993583

0.9995

0.995653

0.994324

0.997023

0.996

0.994352

1

0.996573

0.501005

0.981779

0.5

0.5005

0.5

0.5

0.5

0.5

1.00E-04

0.996279

0.998724

0.99858

0.993922

0.997259

0.997435

0.997844

0.994296

0.994786

0.9995

0.995111

0.99446

0.996342

0.9965

0.996186

1

0.997

0.506156

0.9845

0.5

0.5005

0.5

0.5

0.5

0.502025

?

在0.3<=θ<=10這個區間,可以明顯的觀察到pave有上升的趨勢,分類準確率很高,接近100%。但當θ<0.3以后pave急劇下降,到接近50%。也就是當θ<0.3以后雖然網絡仍然可以收斂但已經不能有效分類。

也就是用映射法分類兩條直線,θ最小值約為0.3度。

?

總結

以上是生活随笔為你收集整理的用分类映射的办法分类两条夹角为0.3度的直线的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。