日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA MATH523A 实分析1 度量空间 概念与定理总结

發布時間:2025/4/14 编程问答 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA MATH523A 实分析1 度量空间 概念与定理总结 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

UA MATH523A 實分析1 集合論基礎 概念與定理總結

    • 序關系
    • 度量空間

limit superior and lim inferior
lim?sup?Fn=?k=1∞?n=k∞Fnlim?inf?Fn=?k=1∞?n=k∞Fn\limsup F_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} F_n \\ \liminf F_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} F_nlimsupFn?=k=1??n=k??Fn?liminfFn?=k=1??n=k??Fn?

de Morgan’s law
(?α∈AFα)C=?α∈AFαC(?α∈AFα)C=?α∈AFαC\left( \bigcup_{\alpha \in A} F_{\alpha} \right)^C = \bigcap_{\alpha \in A} F_{\alpha}^C \\ \left( \bigcap_{\alpha \in A} F_{\alpha} \right)^C = \bigcup_{\alpha \in A} F_{\alpha}^C(αA??Fα?)C=αA??FαC?(αA??Fα?)C=αA??FαC?

For preimage
f?1(?α∈AEα)=?α∈Af?1(Eα)f?1(?α∈AEα)=?α∈Af?1(Eα)f?1(EαC)=(f?1(Eα))Cf^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A}f^{-1}(E_{\alpha}) \\ f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A}f^{-1}(E_{\alpha}) \\ f^{-1}(E_{\alpha}^C) = (f^{-1}(E_{\alpha}))^Cf?1(αA??Eα?)=αA??f?1(Eα?)f?1(αA??Eα?)=αA??f?1(Eα?)f?1(EαC?)=(f?1(Eα?))C

序關系

Partial order ?x,y∈X\forall x,y \in X?x,yX, RRR relation such that

  • xRxxRxxRx?x∈X\forall x \in X?xX
  • xRy,yRx?x=yxRy, yRx \Rightarrow x=yxRy,yRx?x=y
  • xRy,yRz?xRzxRy, yRz \Rightarrow xRzxRy,yRz?xRz
  • Denoted as (X,≤)(X,\le)(X,), if one of x≤y,y≤xx\le y,y\le xxy,yx holds, it is total order (linear order).

    Axiom of Choice(by Zermelo 1904)一列非空集合的笛卡爾積也是非空集合
    Zorn’s Lemma如果偏序集的所有全序子集都有一個上界,那么這個偏序集有最大元
    Hausdorff Maximal Principle每個偏序集都有一個最大的全序子集
    Well Ordering Principle (by Cantor 1883)任意非空集合上都可以定義一個良序使之成為良序集

    度量空間

    Metric Space(X,ρ)(X,\rho)(X,ρ)ρ:X×X→[0,∞)\rho:X\times X \to [0,\infty)ρ:X×X[0,) is metric, if

  • ρ(x,y)=0\rho(x,y)=0ρ(x,y)=0 iff x=yx=yx=y
  • ?x,y∈X\forall x,y \in X?x,yX,ρ(x,y)=ρ(y,x)\rho(x,y)=\rho(y,x)ρ(x,y)=ρ(y,x)
  • ?x,y,z∈X\forall x,y,z \in X?x,y,zX, ρ(x,z)≤ρ(x,y)+ρ(y,z)\rho(x,z) \le \rho(x,y)+\rho(y,z)ρ(x,z)ρ(x,y)+ρ(y,z)
  • Product measure ρ((x1,y1),(x2,y2))=max?{ρ1(x1,x2),ρ2(y1,y2)}\rho((x_1,y_1),(x_2,y_2)) = \max\{\rho_1(x_1,x_2),\rho_2(y_1,y_2)\}ρ((x1?,y1?),(x2?,y2?))=max{ρ1?(x1?,x2?),ρ2?(y1?,y2?)}

    Open balls B(r,x)={z∈X:ρ(x,z)<r}B(r,x) = \{z \in X:\rho(x,z)<r\}B(r,x)={zX:ρ(x,z)<r}

    Interior point?x∈X\forall x \in X?xX, if ?r>0\exists r>0?r>0, B(r,x)?AB(r,x) \subset AB(r,x)?A
    Exterior point?x∈X\forall x \in X?xX, if ?r>0\exists r>0?r>0, B(r,x)?ACB(r,x) \subset A^CB(r,x)?AC
    Boundary point?x∈X\forall x \in X?xX, if ?r>0\exists r>0?r>0, B(r,x)∩A≠?B(r,x) \cap A \ne \phiB(r,x)A?=?, B(r,x)∩AC≠?B(r,x)\cap A^C\ne \phiB(r,x)AC?=?

    Interior int(A)int(A)int(A), collection of all interior points
    Boundary ?A\partial A?A, collection of all boundary points
    ClosureAˉ\bar{A}Aˉ, the smallest closed set containing AAA, Aˉ=intA??A\bar A = int A \sqcup \partial AAˉ=intA??A

    dense in X if Eˉ=X\bar E = XEˉ=X
    nowhere dense intEˉ=?int \bar E = \phiintEˉ=?
    Separable has countable dense subset

    Proposition 0.22 Equivalent:

  • x∈Eˉx \in \bar ExEˉ
  • B(r,x)∩E≠?,?r>0B(r,x) \cap E \ne \phi, \forall r>0B(r,x)E?=?,?r>0
  • ?{xn}?E\exists \{x_n\} \subset E?{xn?}?E, xn→xx_n \to xxn?x
  • Proposition 0.23 f:X1→X2f:X_1 \to X_2f:X1?X2? conti iff f?1(U)f^{-1}(U)f?1(U) open in X1X_1X1? for all open UUU in X2X_2X2?.

    Cauchy ρ(xn,xm)→0\rho(x_n,x_m) \to 0ρ(xn?,xm?)0 as n,m→∞n,m \to \inftyn,m.
    Complete all Cauchy sequences are convergence

    Proposition 0.24 A closed subset of a complete metric space is complete. A complete subset of an arbitrary metric space is closed.

    Totally Bounded ?zj∈E\exists z_j \in E?zj?E, ∪j=1∞B(?,zj)?E\cup_{j=1}^{\infty}B(\epsilon,z_j) \supset Ej=1?B(?,zj?)?E.

    Compact = Complete+Totally Bounded, totally bounded = bounded in real space.

    Theorem 0.25 Equivalent

  • EEE compact
  • Bolzano-Weierstrass: every sequence in E has a subsequence converges to a point in E
  • Heine-Borel: every open covering of E, exists a sub open covering of E
  • 總結

    以上是生活随笔為你收集整理的UA MATH523A 实分析1 度量空间 概念与定理总结的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 天堂精品一区二区三区 | 粉嫩av一区二区 | 国产一区成人 | 久久久久久国产精品免费播放 | 综合九九 | 欧美1区2区3区 | 亚洲精品20p | 久久一级视频 | 亚洲激情视频在线 | 国产曰肥老太婆无遮挡 | 国产日本欧美在线观看 | 精品日韩在线观看 | 亚洲国产影视 | 国产一区二 | 亚洲综合图片网 | 国产精品高清网站 | 国产又黄又大又粗的视频 | 亚洲区成人 | 中文字幕亚洲第一 | 黄片毛片视频 | 国产毛片毛片毛片毛片毛片毛片 | 国产一级性生活片 | 寡妇一级片 | 一级片免费播放 | 亚洲精品在线视频 | 中文字幕日韩精品亚洲一区小树林 | 国产91熟女高潮一区二区 | av毛片大全 | jizzzz中国| 懂色一区二区三区免费观看 | 精品国产乱码久久久久久蜜臀网站 | 午夜精品久久久久久久99 | 97在线视频观看 | 少妇中出视频 | 小优视频污 | 最近最新中文字幕 | 国产丝袜久久 | 中文字幕欧美一区 | 国产成人综合一区二区三区 | 中文字幕久热 | 亚洲欧美日韩电影 | 亚洲毛片在线免费观看 | 国产最爽的乱淫视频国语对白 | 国产成人午夜精品无码区久久 | 天堂网男人 | 国产四区 | 欧美中文日韩 | 亚洲成人中文字幕在线 | 中文字幕在线观看 | 亚洲精品欧洲 | 国产网站在线免费观看 | 亚洲最大av在线 | 成人黄色网页 | 天堂8中文在线 | 久久精品男人的天堂 | 青青草视频免费播放 | 五月婷婷网站 | 日韩aⅴ在线观看 | 制服丝袜第二页 | 久久伊人中文字幕 | 欧美a一级片 | 欧美brazzers| 国内三级视频 | 在线播放的av | 午夜激情免费视频 | 成人看 | 91精品国产综合久久久久久久 | 国产r级在线| 国产麻豆91视频 | 黄色一级视频免费看 | 人妻无码一区二区三区四区 | 爱情岛成人 | 成人国产在线观看 | 日韩亚洲精品中文字幕 | 黄页网址大全免费观看 | julia一区二区三区中文字幕 | 青青青在线观看视频 | 日剧大尺度床戏做爰 | 欧美精品一区在线 | 日本乱子伦 | 欧美精品一区二区在线播放 | 4444亚洲人成无码网在线观看 | 欧美无吗 | 精品国产乱码久久久久久郑州公司 | 无码人妻精品一区二区中文 | 精品乱码一区二区三区四区 | www.婷婷.com| 国产精品99在线观看 | 欧美亚洲日本在线 | 中文字幕无码av波多野吉衣 | 美女脱衣服一干二净 | 色欲av永久无码精品无码蜜桃 | 天天欧美 | 久久久精品中文字幕 | 美国特色黄a大片 | 99这里 | 国产第四页 | 森泽佳奈中文字幕 | 亚洲高清在线一区 |