日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA MATH523A 实分析3 积分理论例题 Fubini定理计算重积分的极限

發(fā)布時(shí)間:2025/4/14 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA MATH523A 实分析3 积分理论例题 Fubini定理计算重积分的极限 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

UA MATH523A 實(shí)分析3 積分理論例題 Fubini定理計(jì)算重積分的極限


lim?k→∞∫0∞k3/2e?kx∫0xsin?tt3/2dtdx\lim_{k \to \infty}\int_0^{\infty} k^{3/2}e^{-kx}\int_0^x\frac{\sin t}{t^{3/2}}dtdxklim?0?k3/2e?kx0x?t3/2sint?dtdx


積分部分難點(diǎn)在于它積不出來,因?yàn)?span id="ozvdkddzhkzd" class="katex--inline">sin?tt3/2\frac{\sin t}{t^{3/2}}t3/2sint?的積分找不到,所以我們用Taylor級數(shù)+Gamma函數(shù)的技巧來做。首先寫出sin?tt3/2\frac{\sin t}{t^{3/2}}t3/2sint?的Taylor級數(shù),
sin?tt3/2=∑n=0∞(?1)nt2n?12(2n+1)!\frac{\sin t}{t^{3/2}}=\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n-\frac{1}{2}}}{(2n+1)!}t3/2sint?=n=0?(2n+1)!(?1)nt2n?21??

因此
∫0xsin?tt3/2dt=∫0x∑n=0∞(?1)nt2n?12(2n+1)!dt=∑n=0∞(?1)n(2n+1)!∫0xt2n?1dt=∑n=0∞(?1)nx2n+1n(2n+12)(2n+1)!\int_0^x\frac{\sin t}{t^{3/2}}dt = \int_0^x\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n-\frac{1}{2}}}{(2n+1)!}dt\\ = \sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\int_0^x t^{2n-1}dt = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+\frac{1}{n}}}{(2n+\frac{1}{2})(2n+1)!}0x?t3/2sint?dt=0x?n=0?(2n+1)!(?1)nt2n?21??dt=n=0?(2n+1)!(?1)n?0x?t2n?1dt=n=0?(2n+21?)(2n+1)!(?1)nx2n+n1??

下面我們考慮累次積分
∫0∞k3/2e?kx∫0xsin?tt3/2dtdx=∫0∞k3/2e?kx∑n=0∞(?1)nx2n+12(2n+12)(2n+1)!dx=∑n=0∞(?1)nk3/2(2n+12)(2n+1)!∫0∞e?kxx2n+12dx\int_0^{\infty} k^{3/2}e^{-kx}\int_0^x\frac{\sin t}{t^{3/2}}dtdx \\ = \int_0^{\infty} k^{3/2}e^{-kx}\sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+\frac{1}{2}}}{(2n+\frac{1}{2})(2n+1)!}dx \\ =\sum_{n=0}^{\infty} \frac{(-1)^nk^{3/2}}{(2n+\frac{1}{2})(2n+1)!}\int_0^{\infty} e^{-kx}x^{2n+\frac{1}{2}}dx0?k3/2e?kx0x?t3/2sint?dtdx=0?k3/2e?kxn=0?(2n+21?)(2n+1)!(?1)nx2n+21??dx=n=0?(2n+21?)(2n+1)!(?1)nk3/2?0?e?kxx2n+21?dx

這里的積分∫0∞e?kxx2n+12dx\int_0^{\infty} e^{-kx}x^{2n+\frac{1}{2}}dx0?e?kxx2n+21?dx很明顯就是gamma函數(shù)的構(gòu)造,
∫0∞e?kxx2n+12dx=Γ(2n+32)k2n+32\int_0^{\infty} e^{-kx}x^{2n+\frac{1}{2}}dx=\frac{\Gamma(2n+\frac{3}{2})}{k^{2n+\frac{3}{2}}}0?e?kxx2n+21?dx=k2n+23?Γ(2n+23?)?

所以
∫0∞k3/2e?kx∫0xsin?tt3/2dtdx=∑n=0∞(?1)nk3/2(2n+12)(2n+1)!Γ(2n+32)k2n+32=Γ(12)+∑n=1∞(?1)nk3/2(2n+12)(2n+1)!Γ(2n+32)k2n+32≤Γ(12)+O(k?2)\int_0^{\infty} k^{3/2}e^{-kx}\int_0^x\frac{\sin t}{t^{3/2}}dtdx \\ =\sum_{n=0}^{\infty} \frac{(-1)^nk^{3/2}}{(2n+\frac{1}{2})(2n+1)!}\frac{\Gamma(2n+\frac{3}{2})}{k^{2n+\frac{3}{2}}} \\ = \Gamma(\frac{1}{2})+\sum_{n=1}^{\infty} \frac{(-1)^nk^{3/2}}{(2n+\frac{1}{2})(2n+1)!}\frac{\Gamma(2n+\frac{3}{2})}{k^{2n+\frac{3}{2}}} \le \Gamma(\frac{1}{2})+O(k^{-2})0?k3/2e?kx0x?t3/2sint?dtdx=n=0?(2n+21?)(2n+1)!(?1)nk3/2?k2n+23?Γ(2n+23?)?=Γ(21?)+n=1?(2n+21?)(2n+1)!(?1)nk3/2?k2n+23?Γ(2n+23?)?Γ(21?)+O(k?2)

因此k→∞k \to \inftyk,
∫0∞k3/2e?kx∫0xsin?tt3/2dtdx→Γ(1/2)=π\(zhòng)int_0^{\infty} k^{3/2}e^{-kx}\int_0^x\frac{\sin t}{t^{3/2}}dtdx \to \Gamma(1/2)=\sqrt{\pi}0?k3/2e?kx0x?t3/2sint?dtdxΓ(1/2)=π?

評注
∑n=1∞(?1)nk3/2(2n+12)(2n+1)!Γ(2n+32)k2n+32=∑n=1∞(?1)nΓ(2n+12)(2n+1)!1k2n≤∑n=1∞1k2n=1k2?1=O(k?2)\sum_{n=1}^{\infty} \frac{(-1)^nk^{3/2}}{(2n+\frac{1}{2})(2n+1)!}\frac{\Gamma(2n+\frac{3}{2})}{k^{2n+\frac{3}{2}}} =\sum_{n=1}^{\infty} \frac{(-1)^n\Gamma(2n+\frac{1}{2})}{(2n+1)!}\frac{1}{k^{2n}} \\ \le \sum_{n=1}^{\infty}\frac{1}{k^{2n}} = \frac{1}{k^{2}-1}=O(k^{-2})n=1?(2n+21?)(2n+1)!(?1)nk3/2?k2n+23?Γ(2n+23?)?=n=1?(2n+1)!(?1)nΓ(2n+21?)?k2n1?n=1?k2n1?=k2?11?=O(k?2)

總結(jié)

以上是生活随笔為你收集整理的UA MATH523A 实分析3 积分理论例题 Fubini定理计算重积分的极限的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。