日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

UA MATH524 复变函数5 代数运算、可微性与积分基础例题

發(fā)布時間:2025/4/14 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 UA MATH524 复变函数5 代数运算、可微性与积分基础例题 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

UA MATH524 復(fù)變函數(shù)5 代數(shù)運算、可微性與積分基礎(chǔ)例題

例1 z=1?2iz=1-2iz=1?2iw=1+iw=1+iw=1+i,計算zz?2wˉ,z10,ez,cos?z,log?(1?2i)\frac{z}{z-2\bar w},z^{10},e^z,\cos z,\log(1-2i)z?2wˉz?,z10,ez,cosz,log(1?2i)

答案
zz?2wˉ=1?2i(1?2i)?2(1?i)=1?2i?1=?1+2iz10=55(cos?(10arctan?(2))?isin?(10arctan?(2)))ez=ecos?2?iesin?2cos?z=eiz+e?iz2=e2+i+e?2?i2=ch(2)cos?1+ish(2)sin?1log?(1?2i)=ln?5+i(arctan?(2)+2kπ),k∈Z\begin{aligned}\frac{z}{z-2\bar w} & =\frac{1-2i}{(1-2i)-2(1-i)} =\frac{1-2i}{-1}=-1+2i\end{aligned} \\ z^{10}=5^5(\cos(10\arctan(2))-i\sin(10\arctan(2)) ) \\ e^z = e \cos 2-ie \sin 2 \\ \cos z = \frac{e^{iz}+e^{-iz}}{2} = \frac{e^{2+i}+e^{-2-i}}{2}=ch(2)\cos 1+ish(2)\sin 1 \\ \log(1-2i)=\ln \sqrt 5 + i(\arctan(2)+2k \pi),k \in \mathbb Zz?2wˉz??=(1?2i)?2(1?i)1?2i?=?11?2i?=?1+2i?z10=55(cos(10arctan(2))?isin(10arctan(2)))ez=ecos2?iesin2cosz=2eiz+e?iz?=2e2+i+e?2?i?=ch(2)cos1+ish(2)sin1log(1?2i)=ln5?+i(arctan(2)+2kπ),kZ

例2 用定義判斷f(z)=(Im(z))2f(z)=(Im(z))^2f(z)=(Im(z))2是否可微

答案 計算
f(z+h)?f(z)h=(Im(z+h))2?(Im(z))2h=(Im(h))2h+2Im(z)Im(h)h\begin{aligned}\frac{f(z+h)-f(z)}{h} & =\frac{(Im(z+h))^2-(Im(z))^2}{h} \\ & = \frac{(Im(h))^2}{h}+2Im(z)\frac{Im(h)}{h}\end{aligned}hf(z+h)?f(z)??=h(Im(z+h))2?(Im(z))2?=h(Im(h))2?+2Im(z)hIm(h)??

其中∣Im(h)∣≤∣y∣|Im(h)| \le |y|Im(h)y,因此∣Im(h)h∣≤1|\frac{Im(h)}{h}| \le 1hIm(h)?1,且當(dāng)h→0h \to 0h0時,(Im(h))2h=Im(h)hIm(h)→0\frac{(Im(h))^2}{h}=\frac{Im(h)}{h}Im(h) \to 0h(Im(h))2?=hIm(h)?Im(h)0

如果zzz為實數(shù),則2Im(z)Im(h)h=02Im(z)\frac{Im(h)}{h}=02Im(z)hIm(h)?=0,此時導(dǎo)數(shù)存在且為0;

如果zzz的虛部非0,因為Im(h)h\frac{Im(h)}{h}hIm(h)?的極限不存在(hhh為實數(shù),Im(h)h→0\frac{Im(h)}{h} \to 0hIm(h)?0hhh為純虛數(shù),Im(h)h→1\frac{Im(h)}{h} \to 1hIm(h)?1),所以導(dǎo)數(shù)不存在;

綜上,f(z)f(z)f(z)R\mathbb RR上可微,但因為R\mathbb RR不是開集,所以它不是解析函數(shù)。

例3 用Cauchy-Riemann方程驗證下列函數(shù)是否可微

  • 1z?1\frac{1}{z-1}z?11?
  • ∣z∣2|z|^2z2
  • Imz+iRezIm z +i Re zImz+iRez
  • Imz?iRezIm z -i Re zImz?iRez
  • 答案

  • u+iv=1z?1=1(x?1)+iy=(x?1)?iy(x?1)2+y2=(x?1)(x?1)2+y2+i?y(x?1)2+y2u+iv=\frac{1}{z-1}=\frac{1}{(x-1)+iy}=\frac{(x-1)-iy}{(x-1)^2+y^2}=\frac{(x-1)}{(x-1)^2+y^2}+i\frac{-y}{(x-1)^2+y^2}u+iv=z?11?=(x?1)+iy1?=(x?1)2+y2(x?1)?iy?=(x?1)2+y2(x?1)?+i(x?1)2+y2?y?, ?u?x=[(x?1)2+y2]?2(x?1)2[(x?1)2+y2]2=y2?(x?1)2[(x?1)2+y2]2?u?y=?2(x?1)y[(x?1)2+y2]2?v?x=2(x?1)y[(x?1)2+y2]2?v?y=?[(x?1)2+y2]+2y2[(x?1)2+y2]2=y2?(x?1)2[(x?1)2+y2]2\frac{\partial u}{\partial x}=\frac{[(x-1)^2+y^2]-2(x-1)^2}{[(x-1)^2+y^2]^2}=\frac{y^2-(x-1)^2}{[(x-1)^2+y^2]^2} \\ \frac{\partial u}{\partial y}=\frac{-2(x-1)y}{[(x-1)^2+y^2]^2} \\ \frac{\partial v}{\partial x}=\frac{2(x-1)y}{[(x-1)^2+y^2]^2} \\ \frac{\partial v}{\partial y}=\frac{-[(x-1)^2+y^2]+2y^2}{[(x-1)^2+y^2]^2}=\frac{y^2-(x-1)^2}{[(x-1)^2+y^2]^2}?x?u?=[(x?1)2+y2]2[(x?1)2+y2]?2(x?1)2?=[(x?1)2+y2]2y2?(x?1)2??y?u?=[(x?1)2+y2]2?2(x?1)y??x?v?=[(x?1)2+y2]22(x?1)y??y?v?=[(x?1)2+y2]2?[(x?1)2+y2]+2y2?=[(x?1)2+y2]2y2?(x?1)2?Above, ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? if z≠1z \ne 1z?=1. 1z?1\frac{1}{z-1}z?11? is holomorphic on C?{1}\mathbb C\setminus \{1\}C?{1}
  • u+iv=∣z∣2=x2+y2u+iv=|z|^2=x^2+y^2u+iv=z2=x2+y2, ?u?x=2x?u?y=2y?v?x=0?v?y=0\frac{\partial u}{\partial x}=2x \\ \frac{\partial u}{\partial y}=2y\\ \frac{\partial v}{\partial x}=0 \\ \frac{\partial v}{\partial y}=0?x?u?=2x?y?u?=2y?x?v?=0?y?v?=0 So ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? holds only if x=y=0x=y=0x=y=0. Hence, ∣z∣2|z|^2z2 is only differentiable at z=0z=0z=0, and it is not holomorphic.
  • u+iv=Imz+iRez=y+ixu+iv=Im z +i Re z=y+ixu+iv=Imz+iRez=y+ix, ?u?x=0?u?y=1?v?x=1?v?y=0\frac{\partial u}{\partial x}=0 \\ \frac{\partial u}{\partial y}=1\\ \frac{\partial v}{\partial x}=1 \\ \frac{\partial v}{\partial y}=0?x?u?=0?y?u?=1?x?v?=1?y?v?=0 Note that ?u?y≠??v?x\frac{\partial u}{\partial y} \ne -\frac{\partial v}{\partial x}?y?u??=??x?v?. Imz+iRezIm z +i Re zImz+iRez is not differentiable at any point.
  • u+iv=Imz+iRez=y?ixu+iv=Im z +i Re z=y-ixu+iv=Imz+iRez=y?ix, ?u?x=0?u?y=1?v?x=?1?v?y=0\frac{\partial u}{\partial x}=0 \\ \frac{\partial u}{\partial y}=1\\ \frac{\partial v}{\partial x}=-1 \\ \frac{\partial v}{\partial y}=0?x?u?=0?y?u?=1?x?v?=?1?y?v?=0 So ?u?x=?v?y\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}?x?u?=?y?v? and ?u?y=??v?x\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}?y?u?=??x?v? always holds. Imz+iRezIm z +i Re zImz+iRez is entire.
  • 例4 求下列級數(shù)的收斂半徑
    f(z)=∑n=0+∞(?1)n(z+i)n(3i+4)nf(z)=\sum_{n=0}^{+\infty} (-1)^n\frac{(z+i)^n}{(3i+4)^n} f(z)=n=0+?(?1)n(3i+4)n(z+i)n? 它在z=4+iz=4+iz=4+i處是否收斂?求f′(z)f'(z)f(z)及其收斂半徑。

    答案an=(?1)n(3i+4)na_n=\frac{(-1)^n}{(3i+4)^n}an?=(3i+4)n(?1)n?,
    ∣an∣=15n,lim?n→∞∣an∣1/n=1/5?R=5|a_n|=\frac{1}{5^n},\lim_{n \to \infty} |a_n|^{1/n}=1/5 \Rightarrow R = 5an?=5n1?,nlim?an?1/n=1/5?R=5

    所以收斂域為{z:∣z+i∣<5}\{z:|z+i|<5\}{z:z+i<5},如果z=4+iz=4+iz=4+i,則∣z+i∣=42+22=20<5|z+i|=\sqrt{4^2+2^2}=\sqrt{20}<5z+i=42+22?=20?<5,所以該級數(shù)在z=4+iz=4+iz=4+i處收斂。

    f′(z)=∑n=1+∞(?1)nn(z+i)n?1(3i+4)nf'(z)=\sum_{n=1}^{+\infty} (-1)^n\frac{n(z+i)^{n-1}}{(3i+4)^n} f(z)=n=1+?(?1)n(3i+4)nn(z+i)n?1?

    bn=(?1)nn(3i+4)nb_n=\frac{(-1)^nn}{(3i+4)^n}bn?=(3i+4)n(?1)nn?
    ∣bn∣=n5n,lim?n→∞∣bn∣1/n=1/5?R′=5|b_n|=\frac{n}{5^n},\lim_{n \to \infty} |b_n|^{1/n}=1/5 \Rightarrow R' = 5bn?=5nn?,nlim?bn?1/n=1/5?R=5

    其中n1/n=e1nln?n→e0=1n^{1/n}=e^{\frac{1}{n}\ln n} \to e^0 = 1n1/n=en1?lnne0=1,所以f′(z)f'(z)f(z)的收斂半徑依然是5

    例5 計算下列積分
    ∫γz+1zdz,∫γdzz2\int_{\gamma} \frac{z+1}{z}dz,\int_{\gamma} \frac{dz}{z^2}γ?zz+1?dz,γ?z2dz?

    其中γ\gammaγ

  • 方向為從?1-1?1111的單位圓的上半部分;
  • 方向為從?1-1?1111的單位圓的下半部分;
  • 答案
    z=eitz=e^{it}z=eit表示單位圓的參數(shù)方程,方向從?1-1?1111的單位圓的上半部分為t=πt=\pit=πt=0t=0t=0,方向為從?1-1?1111的單位圓的下半部分為t=πt=\pit=πt=2πt=2\pit=2π

  • 方向為從?1-1?1111的單位圓的上半部分∫γz+1zdz=∫π01+eiteitdeit=?∫0π1+eiteitieitdt=?i∫0π(1+eit)dt=?iπ+2∫γdzz2=∫π0deite2it=?i∫0πe?itdt=?2\begin{aligned} \int_{\gamma} \frac{z+1}{z}dz & = \int_{\pi}^0 \frac{1+e^{it}}{e^{it}}de^{it} =- \int_0^{\pi} \frac{1+e^{it}}{e^{it}}ie^{it}dt \\ & = -i \int_0^{\pi}(1+e^{it})dt = -i\pi+2\end{aligned} \\ \begin{aligned} \int_{\gamma} \frac{dz}{z^2} = \int_{\pi}^{0} \frac{d e^{it}}{e^{2it}} = -i\int_0^{\pi} e^{-it}dt = -2 \end{aligned}γ?zz+1?dz?=π0?eit1+eit?deit=?0π?eit1+eit?ieitdt=?i0π?(1+eit)dt=?iπ+2?γ?z2dz?=π0?e2itdeit?=?i0π?e?itdt=?2?
  • 方向為從?1-1?1111的單位圓的下半部分∫γz+1zdz=∫π2π1+eiteitdeit=∫π2π1+eiteitieitdt=i∫π2π(1+eit)dt=iπ+2∫γdzz2=∫π2πdeite2it=i∫0πe?itdt=?2\begin{aligned} \int_{\gamma} \frac{z+1}{z}dz & = \int_{\pi}^{2\pi} \frac{1+e^{it}}{e^{it}}de^{it} =\int_{\pi}^{2\pi} \frac{1+e^{it}}{e^{it}}ie^{it}dt \\ & = i \int_{\pi}^{2\pi} (1+e^{it})dt =i \pi +2\end{aligned} \\ \begin{aligned} \int_{\gamma} \frac{dz}{z^2} = \int_{\pi}^{2\pi} \frac{d e^{it}}{e^{2it}} = i\int_0^{\pi} e^{-it}dt = -2 \end{aligned}γ?zz+1?dz?=π2π?eit1+eit?deit=π2π?eit1+eit?ieitdt=iπ2π?(1+eit)dt=iπ+2?γ?z2dz?=π2π?e2itdeit?=i0π?e?itdt=?2?
  • 總結(jié)

    以上是生活随笔為你收集整理的UA MATH524 复变函数5 代数运算、可微性与积分基础例题的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。