sklearn快速入门教程:补充内容 -- sklearn模型评价指标汇总(聚类、分类、回归)
生活随笔
收集整理的這篇文章主要介紹了
sklearn快速入门教程:补充内容 -- sklearn模型评价指标汇总(聚类、分类、回归)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
sklearn集成了大多數模型評價指標,這可以很大程度上方便我們的使用,尤其在對進行進行自動調參時可以方便我們進行選擇。
做下這個筆記主要是為了補充之前的內容:sklearn快速入門教程:(四)模型自動調參
后續如果有時間可能會把具體的指標公式全部轉過來,方便查看。
| 分類指標 | ||
| ‘accuracy’ | metrics.accuracy_score | |
| ‘balanced_accuracy’ | metrics.balanced_accuracy_score | |
| ‘average_precision’ | metrics.average_precision_score | |
| ‘neg_brier_score’ | metrics.brier_score_loss | |
| ‘f1’ | metrics.f1_score | for binary targets |
| ‘f1_micro’ | metrics.f1_score | micro-averaged |
| ‘f1_macro’ | metrics.f1_score | macro-averaged |
| ‘f1_weighted’ | metrics.f1_score | weighted average |
| ‘f1_samples’ | metrics.f1_score | by multilabel sample |
| ‘neg_log_loss’ | metrics.log_loss | requires predict_proba support |
| ‘precision’ etc. | metrics.precision_score | suffixes apply as with ‘f1’ |
| ‘recall’ etc. | metrics.recall_score | suffixes apply as with ‘f1’ |
| ‘jaccard’ etc. | metrics.jaccard_score | suffixes apply as with ‘f1’ |
| ‘roc_auc’ | metrics.roc_auc_score | |
| ‘roc_auc_ovr’ | metrics.roc_auc_score | |
| ‘roc_auc_ovo’ | metrics.roc_auc_score | |
| ‘roc_auc_ovr_weighted’ | metrics.roc_auc_score | |
| ‘roc_auc_ovo_weighted’ | metrics.roc_auc_score | |
| 聚類指標 | ||
| ‘adjusted_mutual_info_score’ | metrics.adjusted_mutual_info_score | |
| ‘adjusted_rand_score’ | metrics.adjusted_rand_score | |
| ‘completeness_score’ | metrics.completeness_score | |
| ‘fowlkes_mallows_score’ | metrics.fowlkes_mallows_score | |
| ‘homogeneity_score’ | metrics.homogeneity_score | |
| ‘mutual_info_score’ | metrics.mutual_info_score | |
| ‘normalized_mutual_info_score’ | metrics.normalized_mutual_info_score | |
| ‘v_measure_score’ | metrics.v_measure_score | |
| 回歸指標 | ||
| ‘explained_variance’ | metrics.explained_variance_score | |
| ‘max_error’ | metrics.max_error | |
| ‘neg_mean_absolute_error’ | metrics.mean_absolute_error | |
| ‘neg_mean_squared_error’ | metrics.mean_squared_error | |
| ‘neg_root_mean_squared_error’ | metrics.mean_squared_error | |
| ‘neg_mean_squared_log_error’ | metrics.mean_squared_log_error | |
| ‘neg_median_absolute_error’ | metrics.median_absolute_error | |
| ‘r2’ | metrics.r2_score | |
| ‘neg_mean_poisson_deviance’ | metrics.mean_poisson_deviance | |
| ‘neg_mean_gamma_deviance’ | metrics.mean_gamma_deviance |
總結
以上是生活随笔為你收集整理的sklearn快速入门教程:补充内容 -- sklearn模型评价指标汇总(聚类、分类、回归)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Numpy数组常用函数汇总(数学运算、三
- 下一篇: 数据结构源码笔记(C语言):B树的相关运