日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

TVM性能评估分析(六)

發布時間:2023/11/28 生活经验 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TVM性能评估分析(六) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

TVM性能評估分析(六)

Figure 1. The workflow of development PC, compile, deploy to the device, test, then modify the codes again to see whether it accelerates.

Figure 2. The Android APP takes shared library as input and runs compiled functions on the mobile phone.

Figure 3. Build TVM functions and NDArrays on a remote device. The ability to cross-compile to different platforms makes it easy to develop on one platform and test on another.

Figure 4. The instruction to build for your Android device. Once the APK is built, sign it using apps/android_rpc/dev_tools and install it on the phone.

Figure 5. The NNVM compiler support of TVM stack, we can now directly compile descriptions from deep learning frameworks and compile them to bare metal code that runs on AMD GPUs.

Figure 6. With ROCm backend, the generic workflow

Figure 7. The ONNX library to load the ONNX model into the Protocol buffer object.

Figure 8. An end to end compilation pipeline from front-end deep learning frameworks to bare metal hardwares.

Figure 9. Typical workflow of NNVM Compiler

Figure 10. Separation of Optimization and Deployment

Figure 11. Time Cost of Inference on K80

Figure 12. The cost of inference on Raspberry PI

總結

以上是生活随笔為你收集整理的TVM性能评估分析(六)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。