日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人文社科 > 生活经验 >内容正文

生活经验

TVM性能评估分析(七)

發布時間:2023/11/28 生活经验 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TVM性能评估分析(七) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

TVM性能評估分析(七)

Figure 1. Performance Improvement

Figure 2. Depthwise convolution

Figure 3. Data Fusion

Figure 4. Data Fusion(2)

Figure 5. Shared memory can be seen as cache in GPU. It is on-chip and much faster than global memory.

Figure 6. Shared memory banks are organized such that successive addresses are assigned to successive banks.

Figure 7. Consecutive threads access consecutive memory addresses, thus avoiding bank conflicts

Figure 8. Computational Graph

Figure 9. Sublinear memory optimization functionality that allows user to train 1000 layers of ImageNet ResNet on a single GPU.

Figure 10. We build a low level representation which is based on index formula, with additional support for recurrence computation.

Figure 11. The algorithms described in TVM are then processed in a scheduling phase to apply transformations that are tailored to the target hardware back-end.

Figure 12. Multi-language and Platform Support

Figure 13. Remote Deployment and Execution

Table 1. Raspberry Pi

Figure 14. GPU Results

總結

以上是生活随笔為你收集整理的TVM性能评估分析(七)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。