日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

DZY Loves Math IV(杜教筛)

發布時間:2023/12/3 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 DZY Loves Math IV(杜教筛) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

文章目錄

  • title
  • solution
  • code

title

solution

這道題是多么的妙啊,完全不是我能推出來的式子呢!

觀察數據范圍,有點奇怪欸,在暗示我??

考慮暴力枚舉nnn
S(n,m)=∑i=1mφ(n×i)S(n,m)=\sum_{i=1}^mφ(n\times i)S(n,m)=i=1m?φ(n×i)
神奇的操作來了,將nnn質因數分解,并把不同的質因數分別拿出一個
n=∏piein=\prod p_i^{e_i}n=piei??
q=∏piq=\prod p_iq=pi?
p=∏piei?1p=\prod p_i^{e_i-1}p=piei??1?
則有p×q=np\times q=np×q=n

  • i%j=0i\% j=0i%j=0,則φ(ij)=φ(i)×jφ(ij)=φ(i)\times jφ(ij)=φ(i)×j
  • (i,j)=1(i,j)=1(i,j)=1,則φ(ij)=φ(i)×φ(j)φ(ij)=φ(i)\times φ(j)φ(ij)=φ(i)×φ(j)
  • S(n,m)=∑i=1mφ(n×i)S(n,m)=\sum_{i=1}^mφ(n\times i)S(n,m)=i=1m?φ(n×i)=p?∑i=1mφ(q×i)=p\ ·\sum_{i=1}^mφ(q\times i)=p??i=1m?φ(q×i)=p?∑i=1mφ(qgcd(q,i)×i×gcd(q,i))=p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)}\times i\times gcd(q,i))=p??i=1m?φ(gcd(q,i)q?×i×gcd(q,i))=p?∑i=1mφ(qgcd(q,i))φ(i×gcd(q,i))=p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i\times gcd(q,i))=p??i=1m?φ(gcd(q,i)q?)φ(i×gcd(q,i))=p?∑i=1mφ(qgcd(q,i))φ(i)gcd(q,i)=p\ ·\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i)gcd(q,i)=p??i=1m?φ(gcd(q,i)q?)φ(i)gcd(q,i)=p∑i=1mφ(qgcd(q,i))φ(i)∑d∣gcd(q,i)φ(d)=p\sum_{i=1}^mφ(\frac{q}{gcd(q,i)})φ(i)\sum_{d|gcd(q,i)}φ(d)=pi=1m?φ(gcd(q,i)q?)φ(i)dgcd(q,i)?φ(d)=p∑i=1mφ(i)∑d∣i,d∣qφ(qd)=p\sum_{i=1}^mφ(i)\sum_{d|i,d|q}φ(\frac{q}ozvdkddzhkzd)=pi=1m?φ(i)di,dq?φ(dq?)=p∑d∣qφ(qd)∑i=1?md?φ(i×d)=p\sum_{d|q}φ(\frac{q}ozvdkddzhkzd)\sum_{i=1}^{\lfloor\frac{m}ozvdkddzhkzd\rfloor}φ(i\times d)=pdq?φ(dq?)i=1?dm???φ(i×d)=p∑d∣qφ(qd)S(d,?md?)=p\sum_{d|q}φ(\frac{q}ozvdkddzhkzd)S(d,\lfloor\frac{m}ozvdkddzhkzd\rfloor)=pdq?φ(dq?)S(d,?dm??)

    φφφ用杜教篩,應該是老熟人了
    S(n,m)S(n,m)S(n,m)記憶化一下,應該就沒了

    code

    #include <cstdio> #include <vector> #include <map> using namespace std; #define mod 1000000007 #define int long long #define maxn 200000 map < int, int > mp, s[maxn]; int cnt; int minp[maxn + 5]; //minp[i]:i的最大質因子 int prime[maxn], phi[maxn + 5]; //phi[i]:1~i的phi的前綴和 bool vis[maxn + 5];void init() {phi[1] = 1;for( int i = 2;i <= maxn;i ++ ) {if( ! vis[i] ) prime[++ cnt] = i, minp[i] = i, phi[i] = i - 1;for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {vis[i * prime[j]] = 1, minp[i * prime[j]] = prime[j];if( i % prime[j] == 0 ) {phi[i * prime[j]] = phi[i] * prime[j] % mod;//與式子推導的第二步為什么p能直接從φ里面拿出來呼應break;}elsephi[i * prime[j]] = phi[i] * ( prime[j] - 1 ) % mod;}}for( int i = 1;i <= maxn;i ++ ) phi[i] = ( phi[i] + phi[i - 1] ) % mod; }int Phi( int n ) {if( n <= maxn ) return phi[n];if( mp[n] ) return mp[n];int ans = n * ( n + 1 ) / 2 % mod;for( int i = 2, r;i <= n;i = r + 1 ) {r = n / ( n / i );ans = ( ans - ( r - i + 1 ) * Phi( n / i ) % mod + mod ) % mod;}return mp[n] = ans; }int solve( int n, int m ) {if( ! m ) return 0;if( s[n][m] ) return s[n][m];if( n == 1 ) return s[n][m] = Phi( m );if( m == 1 ) return s[n][m] = ( Phi( n ) - Phi( n - 1 ) + mod ) % mod;vector < int > g;int p = 1, q = 1, N = n, x;while( N > 1 ) {x = minp[N], q *= x, N /= x, g.push_back( x );while( N % x == 0 ) N /= x, p *= x;}int len = g.size(), ans = 0;for( int i = 0;i < ( 1 << len );i ++ ) { //枚舉q的所有質因子(狀壓) int d = 1;for( int j = 0;j < len;j ++ )if( i & ( 1 << j ) ) d = d * g[j]; //二進制位為1則有該質因子ans = ( ans + ( Phi( q / d ) - Phi( q / d - 1 ) + mod ) % mod * solve( d, m / d ) % mod ) % mod;}return s[n][m] = ans * p % mod; }signed main() {int n, m;scanf( "%lld %lld", &n, &m );init();int ans = 0;for( int i = 1;i <= n;i ++ ) ans = ( ans + solve( i, m ) ) % mod;printf( "%lld\n", ans );return 0; }

    總結

    以上是生活随笔為你收集整理的DZY Loves Math IV(杜教筛)的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。