日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

P3768 简单的数学题(杜教筛)

發(fā)布時間:2023/12/4 编程问答 38 豆豆
生活随笔 收集整理的這篇文章主要介紹了 P3768 简单的数学题(杜教筛) 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

P3768 簡單的數(shù)學題

推式子

∑i=1n∑j=1mijgcd(i,j)=∑d=1nd∑i=1n∑j=1mij(gcd(i,j)=d)=∑d=1nd3∑i=1nd∑j=1ndij∑k∣gcd(i,j)=μ(k)=∑d=1nd3∑k=1ndk2μ(k)∑i=1nkdi∑j=1nkdj=∑d=1nd3∑k=1ndk2μ(k)(?nkd?(1+?nkd?)2)2我們假設t=kd=∑t=1nt2(?nt?(1+?nt?)2)2∑k∣ttkμ(k)=∑t=1nt2?(t)(?nt?(1+?nt?)2)2所以我們子要可以通過短時間內(nèi)篩選出∑t=1nt2?(t),即可通過數(shù)論分塊來達到要求了。\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} ijgcd(i, j)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{n} \sum_{j = 1} ^{m}ij(gcd(i, j) = d)\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{i = 1} ^{\frac{n}ozvdkddzhkzd} \sum_{j = 1} ^{\frac{n}ozvdkddzhkzd}ij \sum_{k \mid gcd(i, j)} = \mu(k)\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{k = 1} ^{\frac{n}ozvdkddzhkzd} k ^ 2\mu(k) \sum_{i = 1} ^{\frac{n}{kd}}i \sum_{j = 1} ^{\frac{n}{kd}}j\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{k = 1} ^{\frac{n}ozvdkddzhkzd} k ^ 2\mu(k) \left(\frac{\lfloor \frac{n}{kd}\rfloor(1 + \lfloor \frac{n}{kd}\rfloor)}{2}\right) ^ 2\\ 我們假設t = kd\\ =\sum_{t = 1} ^{n} t ^ 2 \left(\frac{\lfloor \frac{n}{t}\rfloor(1 + \lfloor \frac{n}{t}\rfloor)}{2}\right) ^ 2\sum_{k \mid t} \frac{t}{k} \mu(k)\\ = \sum_{t = 1} ^{n} t ^ 2 \phi(t) \left(\frac{\lfloor \frac{n}{t}\rfloor(1 + \lfloor \frac{n}{t}\rfloor)}{2}\right) ^ 2\\ 所以我們子要可以通過短時間內(nèi)篩選出\sum_{t = 1} ^{n} t ^ 2 \phi(t),即可通過數(shù)論分塊來達到要求了。 i=1n?j=1m?ijgcd(i,j)=d=1n?di=1n?j=1m?ij(gcd(i,j)=d)=d=1n?d3i=1dn??j=1dn??ijkgcd(i,j)?=μ(k)=d=1n?d3k=1dn??k2μ(k)i=1kdn??ij=1kdn??j=d=1n?d3k=1dn??k2μ(k)(2?kdn??(1+?kdn??)?)2t=kd=t=1n?t2(2?tn??(1+?tn??)?)2kt?kt?μ(k)=t=1n?t2?(t)(2?tn??(1+?tn??)?)2內(nèi)t=1n?t2?(t)數(shù)

S(n)=∑i=1ni2?(i)=∑i=1nf(i)∑i=1n(f?g)(i)=∑i=1ng(i)S(ni)g(1)S(n)=∑i=1n(f?g)(i)?∑d=2ng(i)S(nd)(f?g)(i)=∑d∣if(d)g(id)=∑d∣id2?(d)g(id)容易想到∑d∣i?(d)=i,所以如果可以提出d2那就完美了,我們可以另g(i)=i2,上式變成∑d∣id2?(d)i2d2=i2∑d∣i?(d)=i3S(n)=∑i=1ni3?∑d=1nd2S(nd)=n2(n+1)24?∑d=1nd2S(nd)然后數(shù)論分塊,杜教篩即可得到,S(n) = \sum_{i = 1} ^{n} i ^ 2 \phi(i) = \sum_{i = 1} ^{n} f(i) \\ \sum_{i = 1} ^{n} (f * g)(i) \\ = \sum_{i = 1} ^{n}g(i)S(\frac{n}{i})\\ g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{d = 2} ^{n} g(i)S(\frac{n}ozvdkddzhkzd)\\ (f * g)(i) = \sum_{d \mid i} f(d)g(\frac{i}ozvdkddzhkzd) = \sum_{d \mid i} d ^ 2 \phi(d)g(\frac{i}ozvdkddzhkzd)\\ 容易想到\sum_{d \mid i} \phi(d) = i, 所以如果可以提出d ^ 2那就完美了,我們可以另g(i) = i ^ 2,上式變成\\ \sum_{d \mid i} d ^ 2 \phi(d) \frac{i ^ 2}{d ^ 2} = i ^ 2 \sum_{d \mid i} \phi(d) = i ^ 3 \\S(n) = \sum_{i = 1} ^{n} i ^ 3 - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}ozvdkddzhkzd)\\ = \frac{n ^ 2 (n + 1) ^ 2}{4} - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}ozvdkddzhkzd)\\ 然后數(shù)論分塊,杜教篩即可得到, S(n)=i=1n?i2?(i)=i=1n?f(i)i=1n?(f?g)(i)=i=1n?g(i)S(in?)g(1)S(n)=i=1n?(f?g)(i)?d=2n?g(i)S(dn?)(f?g)(i)=di?f(d)g(di?)=di?d2?(d)g(di?)di??(d)=i,d2g(i)=i2di?d2?(d)d2i2?=i2di??(d)=i3S(n)=i=1n?i3?d=1n?d2S(dn?)=4n2(n+1)2??d=1n?d2S(dn?)數(shù)

代碼

/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 8e6 + 10;ll phi[N], mod, n, inv4, inv6;int prime[N], cnt;bool st[N];void init() {phi[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;phi[i] = i - 1;}for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);}}for(int i = 1; i < N; i++) {phi[i] = (phi[i - 1] + 1ll * i * i % mod * phi[i] % mod) % mod;} }ll quick_pow(ll a, ll n, ll mod) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans; }ll calc1(ll x) {x %= mod;return 1ll * x * x % mod * (x + 1) % mod * (x + 1) % mod * inv4 % mod; }ll calc2(ll x) {x %= mod;return x * (x + 1) % mod * (2ll * x + 1) % mod * inv6 % mod; }unordered_map<ll, ll> ans_phi;ll get_phi(ll x) {if(x < N) return phi[x];if(ans_phi.count(x)) return ans_phi[x];ll ans = calc1(x);for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (calc2(r) - calc2(l - 1)) * get_phi(x / l) % mod;ans = (ans % mod + mod) % mod;}return ans_phi[x] = ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);mod = read(), n = read();init();inv4 = quick_pow(4, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod);ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans += (get_phi(r) - get_phi(l - 1)) % mod * calc1(n / l) % mod;ans = (ans % mod + mod) % mod;}cout << ans << endl;return 0; }

LaTeX公式代碼

\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} ijgcd(i, j)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{n} \sum_{j = 1} ^{m}ij(gcd(i, j) = d)\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij \sum_{k \mid gcd(i, j)} = \mu(k)\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{k = 1} ^{\frac{n}{d}} k ^ 2\mu(k) \sum_{i = 1} ^{\frac{n}{kd}}i \sum_{j = 1} ^{\frac{n}{kd}}j\\ = \sum_{d = 1} ^{n} d ^ 3 \sum_{k = 1} ^{\frac{n}{d}} k ^ 2\mu(k) \left(\frac{\lfloor \frac{n}{kd}\rfloor(1 + \lfloor \frac{n}{kd}\rfloor)}{2}\right) ^ 2\\ 我們假設t = kd\\ =\sum_{t = 1} ^{n} t ^ 2 \left(\frac{\lfloor \frac{n}{t}\rfloor(1 + \lfloor \frac{n}{t}\rfloor)}{2}\right) ^ 2\sum_{k \mid t} \frac{t}{k} \mu(k)\\ = \sum_{t = 1} ^{n} t ^ 2 \phi(t) \left(\frac{\lfloor \frac{n}{t}\rfloor(1 + \lfloor \frac{n}{t}\rfloor)}{2}\right) ^ 2\\ 所以我們子要可以通過短時間內(nèi)篩選出\sum_{t = 1} ^{n} t ^ 2 \phi(t),即可通過數(shù)論分塊來達到要求了。 S(n) = \sum_{i = 1} ^{n} i ^ 2 \phi(i) = \sum_{i = 1} ^{n} f(i) \\ \sum_{i = 1} ^{n} (f * g)(i) \\ = \sum_{i = 1} ^{n}g(i)S(\frac{n}{i})\\ g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{d = 2} ^{n} g(i)S(\frac{n}{d})\\ (f * g)(i) = \sum_{d \mid i} f(d)g(\frac{i}{d}) = \sum_{d \mid i} d ^ 2 \phi(d)g(\frac{i}{d})\\ 容易想到\sum_{d \mid i} \phi(d) = i, 所以如果可以提出d ^ 2那就完美了,我們可以另g(i) = i ^ 2,上式變成\\ \sum_{d \mid i} d ^ 2 \phi(d) \frac{i ^ 2}{d ^ 2} = i ^ 2 \sum_{d \mid i} \phi(d) = i ^ 3 \\S(n) = \sum_{i = 1} ^{n} i ^ 3 - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}{d})\\ = \frac{n ^ 2 (n + 1) ^ 2}{4} - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}{d})\\ 然后數(shù)論分塊,杜教篩即可得到,

總結(jié)

以上是生活随笔為你收集整理的P3768 简单的数学题(杜教筛)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。