日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

杜教筛模板(P4213 【模板】杜教筛(Sum))

發(fā)布時(shí)間:2023/12/4 编程问答 21 豆豆
生活随笔 收集整理的這篇文章主要介紹了 杜教筛模板(P4213 【模板】杜教筛(Sum)) 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

P4213 【模板】杜教篩(Sum)

套路推式子

求s(n)=∑i=1nf(i)∑i=1n(f?g)(i)=∑i=1n∑d∣if(d)g(id)=∑d=1n∑i=1?nd?f(i)g(d)=∑d=1ng(d)S(?nd?)=g(1)S(n)+∑d=2ng(d)S(?nd?)則有g(shù)(1)S(n)=∑i=1n(f?g)(i)?∑d=2ng(d)S(?nd?)求s(n) = \sum_{i = 1} ^{n}f(i)\\ \sum_{i = 1} ^{n} (f*g)(i)\\ = \sum_{i = 1} ^{n} \sum_{d\mid i} f(d) g({\frac{i}ozvdkddzhkzd})\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\lfloor\frac{n}ozvdkddzhkzd\rfloor}f(i)g(d)\\ = \sum_{d = 1} ^{n}g(d) S(\lfloor\frac{n}ozvdkddzhkzd\rfloor)\\ = g(1)S(n) + \sum_{d = 2} ^{n} g(d) S(\lfloor\frac{n}ozvdkddzhkzd\rfloor)\\ 則有g(shù)(1)S(n) = \sum_{i = 1} ^{n} (f*g)(i) - \sum_{d = 2} ^{n} g(d) S(\lfloor\frac{n}ozvdkddzhkzd\rfloor) s(n)=i=1n?f(i)i=1n?(f?g)(i)=i=1n?di?f(d)g(di?)=d=1n?i=1?dn???f(i)g(d)=d=1n?g(d)S(?dn??)=g(1)S(n)+d=2n?g(d)S(?dn??)g(1)S(n)=i=1n?(f?g)(i)?d=2n?g(d)S(?dn??)
莫比烏斯函數(shù)求和
對(duì)S(n)=∑i=1Nμ(i)∑i=1n(I?μ)(i)=∑d=1nS(nd)1=S(n)+∑d=2nS(nd)S(n)=1?∑d=2nS(nd)對(duì)S(n) = \sum_{i = 1} ^{N} \mu(i)\\ \sum_{i = 1} ^{n}(I * \mu)(i)\\ = \sum_{d = 1} ^{n} S(\frac{n}ozvdkddzhkzd)\\ 1 = S(n) + \sum_{d = 2} ^{n} S(\frac{n}ozvdkddzhkzd)\\ S(n) = 1 - \sum_{d = 2} ^{n} S(\frac{n}ozvdkddzhkzd) 對(duì)S(n)=i=1N?μ(i)i=1n?(I?μ)(i)=d=1n?S(dn?)1=S(n)+d=2n?S(dn?)S(n)=1?d=2n?S(dn?)

歐拉函數(shù)求和
對(duì)S(n)=∑i=1n?(i)∑i=1n(I??)(i)=∑d=1nS(nd)=S(n)+∑d=2n?(nd)S(n)=n(n+1)2?∑d=2n?(nd)對(duì)S(n) = \sum_{i = 1} ^{n} \phi(i)\\ \sum_{i = 1} ^{n} (I * \phi)(i)\\ = \sum_{d = 1} ^{n} S(\frac{n}ozvdkddzhkzd)\\ = S(n) + \sum_{d = 2} ^{n} \phi(\frac{n}ozvdkddzhkzd)\\ S(n) = \frac{n (n + 1)}{2} - \sum_{d = 2} ^{n} \phi(\frac{n}ozvdkddzhkzd) 對(duì)S(n)=i=1n??(i)i=1n?(I??)(i)=d=1n?S(dn?)=S(n)+d=2n??(dn?)S(n)=2n(n+1)??d=2n??(dn?)

代碼

/*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h>#define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std;typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii;const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x; }const int N = 5e6 + 10;ll phi[N], mu[N]; int prime[N], cnt = 0; bool st[N];void init() {phi[1] = mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;phi[i] = i - 1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) mu[i] += mu[i - 1], phi[i] += phi[i - 1]; }unordered_map<int, ll> ans_phi; unordered_map<int, ll> ans_mu;ll get_phi(ll x) {if(x < N) return phi[x];if(ans_phi[x]) return ans_phi[x];ll ans = x * (x + 1) >> 1;for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (r - l + 1) * get_phi(x / l);}return ans_phi[x] = ans; }ll get_mu(ll x) {if(x < N) return mu[x];if(ans_mu[x]) return ans_mu[x];int ans = 1;for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (r - l + 1) * get_mu(x / l);}return ans_mu[x] = ans; }int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {ll n = read();printf("%lld %lld\n", get_phi(n), get_mu(n));}return 0; }

總結(jié)

以上是生活随笔為你收集整理的杜教筛模板(P4213 【模板】杜教筛(Sum))的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。