日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

P4389 付公主的背包(生成函数,多项式exp)

發布時間:2023/12/4 编程问答 29 豆豆
生活随笔 收集整理的這篇文章主要介紹了 P4389 付公主的背包(生成函数,多项式exp) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

P4389 付公主的背包

考慮生成函數有:
∏i=1n11?xvi對其取對數得,∑i=1nln?11?xviF(x)=11?xv,G(x)=ln?F(x)G(x)=∫F′(x)F(x)dxG(x)=∫vxv?11?xvdxG(x)=∫∑n≥0vxvn+v?1dxG(x)=∑n≥0vxvn+vvn+vG(x)=∑n≥0xv(n+1)n+1G(x)=∑n≥1xvnn對于原式:∑i=1n∑j=1∞xvijj\prod_{i = 1} ^{n} \frac{1}{1 - x ^{v_i}}\\ 對其取對數得,\sum_{i = 1} ^{n} \ln \frac{1}{1 - x ^{v_i}}\\ F(x) = \frac{1}{1 - x ^ v}, G(x) = \ln F(x)\\ G(x) = \int \frac{F'(x)}{F(x)} dx\\ G(x) = \int \frac{v x ^{v - 1}}{1 - x ^ v} dx\\ G(x) = \int \sum_{n \geq 0} vx ^{vn + v - 1} dx\\ G(x) = \sum_{n \geq 0} \frac{v x ^{vn + v}}{vn + v}\\ G(x) = \sum_{n \geq 0} \frac{x ^{v(n + 1)}}{n + 1}\\ G(x) = \sum_{n \geq 1} \frac{x ^{vn}}{n}\\ 對于原式:\sum_{i = 1} ^{n} \sum_{j = 1} ^{\infty} \frac{x ^{v_i j}}{j}\\ i=1n?1?xvi?1?i=1n?ln1?xvi?1?F(x)=1?xv1?,G(x)=lnF(x)G(x)=F(x)F(x)?dxG(x)=1?xvvxv?1?dxG(x)=n0?vxvn+v?1dxG(x)=n0?vn+vvxvn+v?G(x)=n0?n+1xv(n+1)?G(x)=n1?nxvn?:i=1n?j=1?jxvi?j?
提前預處理出invinvinv,然后O(nlog?n)O(n \log n)O(nlogn)vijv_i jvi?j項加上inv[j]inv[j]inv[j],再做一次(modxm+1)\pmod{x ^{m + 1}}(modxm+1)的,多項式expexpexp即可。

#include <bits/stdc++.h>using namespace std;const int mod = 998244353, inv2 = mod + 1 >> 1;namespace Quadratic_residue {struct Complex {int r, i;Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}};int I2;Complex operator * (const Complex &a, Complex &b) {return Complex((1ll * a.r * b.r % mod + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);}Complex quick_pow(Complex a, int n) {Complex ans = Complex(1, 0);while (n) {if (n & 1) {ans = ans * a;}a = a * a;n >>= 1;}return ans;}int get_residue(int n) {mt19937 e(233);if (n == 0) {return 0;}if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {return -1;}uniform_int_distribution<int> r(0, mod - 1);int a = r(e);while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {a = r(e);}I2 = (1ll * a * a % mod - n + mod) % mod;int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;if(x > y) swap(x, y);return x;} }const int N = 1e6 + 10;int r[N], inv[N], a[N], b[N], c[N], d[N], e[N], t[N], n, m;//a是輸入數組,b存放多項式逆,c存放多項式開根,d存放多項式對數ln,e存放多項式指數exp,t作為中間轉移數組int quick_pow(int a, int n) {int ans = 1;while (n) {if (n & 1) {ans = 1ll * a * ans % mod;}a = 1ll * a * a % mod;n >>= 1;}return ans; }void get_r(int lim) {for (int i = 0; i < lim; i++) {r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);} }void get_inv(int n) {inv[1] = 1;for (int i = 2; i <= n; i++) {inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;} }void NTT(int *f, int lim, int rev) {for (int i = 0; i < lim; i++) {if (i < r[i]) {swap(f[i], f[r[i]]);}}for (int mid = 1; mid < lim; mid <<= 1) {int wn = quick_pow(3, (mod - 1) / (mid << 1));for (int len = mid << 1, cur = 0; cur < lim; cur += len) {int w = 1;for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;}}}if (rev == -1) {int inv = quick_pow(lim, mod - 2);reverse(f + 1, f + lim);for (int i = 0; i < lim; i++) {f[i] = 1ll * f[i] * inv % mod;}} }void polyinv(int *f, int *g, int n) {/* 保證數組清零: 用了數組(a, b, t), a數組不變, b數組只有前n個不為零后面全為零, t數組用完后清零了。*/if (n == 1) {g[0] = quick_pow(f[0], mod - 2);return ;}polyinv(f, g, n + 1 >> 1);for (int i = 0; i < n; i++) {t[i] = f[i];}int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);NTT(t, lim, 1);NTT(g, lim, 1);for (int i = 0; i < lim; i++) {int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;g[i] = 1ll * g[i] * cur % mod;t[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }void polysqrt(int *f, int *g, int n) {if (n == 1) {g[0] = Quadratic_residue::get_residue(f[0]);return ;}polysqrt(f, g, n + 1 >> 1);polyinv(g, b, n);int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);for (int i = 0; i < n; i++) {t[i] = f[i];}NTT(g, lim, 1);NTT(b, lim, 1);NTT(t, lim, 1);for (int i = 0; i < lim; i++) {g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;b[i] = t[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }void derivative(int *a, int *b, int n) {for (int i = 0; i < n; i++) {b[i] = 1ll * a[i + 1] * (i + 1) % mod;} }void integrate(int *a, int n) {for (int i = n - 1; i >= 1; i--) {a[i] = 1ll * a[i - 1] * inv[i] % mod;}a[0] = 0; }void polyln(int *f, int *g, int n) {polyinv(f, b, n);derivative(f, g, n);int lim = 1;while (lim < 2 * n) {lim <<= 1;}get_r(lim);NTT(g, lim, 1);NTT(b, lim, 1);for (int i = 0; i < lim; i++) {g[i] = 1ll * g[i] * b[i] % mod;b[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;}integrate(g, n); }void polyexp(int *f, int *g, int n) {if (n == 1) {g[0] = 1;return ;}polyexp(f, g, n + 1 >> 1);int lim = 1;while (lim < 2 * n) {lim <<= 1;}polyln(g, d, n);for (int i = 0; i < n; i++) {t[i] = (f[i] - d[i] + mod) % mod;}t[0] = (t[0] + 1) % mod;get_r(lim);NTT(g, lim, 1);NTT(t, lim, 1);for (int i = 0; i < lim; i++) {g[i] = 1ll * g[i] * t[i] % mod;t[i] = d[i] = 0;}NTT(g, lim, -1);for (int i = n; i < lim; i++) {g[i] = 0;} }int vis[N];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);scanf("%d %d", &n, &m);get_inv(4 * m);for (int i = 1, v; i <= n; i++) {scanf("%d", &v);vis[v]++;}for (int i = 1; i <= m; i++) {for (int j = i; j <= m; j += i) {a[j] = (a[j] + 1ll * inv[i] * vis[j / i] % mod) % mod;}}polyexp(a, e, m + 1);for (int i = 1; i <= m; i++) {printf("%d\n", e[i]);}return 0; }

總結

以上是生活随笔為你收集整理的P4389 付公主的背包(生成函数,多项式exp)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。