日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 循环神经网络 >内容正文

循环神经网络

【智能优化算法】改进的侏儒猫鼬优化算法(IDMO)附matlab代码

發布時間:2024/3/13 循环神经网络 43 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【智能优化算法】改进的侏儒猫鼬优化算法(IDMO)附matlab代码 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?作者簡介:熱愛科研的Matlab仿真開發者,修心和技術同步精進,matlab項目合作可私信。

🍎個人主頁:Matlab科研工作室

🍊個人信條:格物致知。

? 內容介紹

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses' social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms.

? 部分代碼

%_______________________________________________________________________________________%

%? Dwarf Mongoose Optimization Algorithm source codes (version 1.0)? ? ? ? ? ? ? ? ? ? ?%

%? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?%

%? Developed in MATLAB R2015a (7.13)? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? %

clear all?

clc

Solution_no=50;? % Number of search agents

F_name='F1';? % Name of the test function that can be from F1 to F23

M_Iter=200;? % Maximum numbef of iterations??

[LB,UB,Dim,F_obj]=Get_F(F_name);?

[Best_FF,Best_P,conv]=IDMO(Solution_no,M_Iter,LB,UB,Dim,F_obj);??

figure('Position',[200? ? ? ? ?300? ? ? ? 770? ? ? ? ?267])

subplot(1,2,1);

func_plot(F_name);

title('Parameter space')

xlabel('x_1');

ylabel('x_2');

zlabel([F_name,'( x_1 , x_2 )'])

box on

axis tight

axis square

subplot(1,2,2);

semilogy(conv,'Color','r','LineWidth',1.5)

title('Convergence curve')

xlabel('Iteration#');

ylabel('Best score obtained so far');

box on

axis tight

axis squar

display(['The best-obtained solution by IDMO is : ', num2str(Best_P)]);

display(['The best optimal values of the objective funciton found by IDMO is : ', num2str(Best

? 運行結果

? 參考文獻

[1] Agushaka J O ,? Ezugwu A E ,? Abualigah L . Dwarf Mongoose Optimization Algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2022(Mar.1):391.

? 完整代碼

??部分理論引用網絡文獻,若有侵權聯系博主刪除

?? 關注我領取海量matlab電子書和數學建模資料

?

總結

以上是生活随笔為你收集整理的【智能优化算法】改进的侏儒猫鼬优化算法(IDMO)附matlab代码的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。