日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 目标检测 >内容正文

目标检测

深度学习和目标检测系列教程 7-300:先进的目标检测Faster R-CNN架构

發布時間:2024/10/8 目标检测 155 豆豆
生活随笔 收集整理的這篇文章主要介紹了 深度学习和目标检测系列教程 7-300:先进的目标检测Faster R-CNN架构 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

@Author:Runsen

Faster R-CNN

由于Fast R-CNN 過程中仍然存在一個瓶頸,即ROI Projection。眾所周知,檢測對象的第一步是在對象周圍生成一組潛在的邊界框。在 Fast R-CNN 中,ROI Projection是使用Selective Search創建的,發現一個非常緩慢的過程是整個對象檢測過程的瓶頸。

選擇性搜索是一個緩慢且耗時的過程,會影響網絡的性能。因此,任少清等人提出了一種對象檢測算法,該算法消除了選擇性搜索算法,讓網絡學習了區域提議區域提議。

Faster R-CNN與 Fast R-CNN 類似,圖像作為輸入,提供給提供卷積特征圖的卷積網絡。不是在特征圖上使用選擇性搜索算法來識別區域提議,而是使用單獨的網絡來預測ROI Projection。然后使用 RoI 池化層對預測的區域建議進行重新整理,然后使用 RoI 池化層對建議區域內的圖像進行分類并預測邊界框的偏移值。


從上圖可以看出,Faster R-CNN 比Fast R-CNN要快得多。因此,它是目前先進的目標檢測算法。

為什么不將這些相同的 CNN 結果重用于區域提議,而不是運行單獨的選擇性搜索算法

讓我們看一個Faster R-CNN的思想,首先,讓我們了解一下具有不同縱橫比和尺度的重疊ROI的概念。

從圖像中,我們看到很多物體相互重疊。在電視機里看到一輛汽車、一輛自行車、一個拿著電視機的人和一只狗。選擇性搜索可以解決這個問題,但我們最終會得到大量的 ROI。我們需要想一個能有效解決這個問題的想法。

如果我們在不同的對象周圍繪制邊界框,它看起來是這樣的。

實現這一點有點復雜,但 Anchor Boxes 的想法使它變得簡單。讓我們了解這些錨框的含義。

通常,對象可以放入方形盒子中,也可以放入長方形和寬,或長方形和高。從廣義上講,它們可以說是大的、小的或中等的。因此,通過實驗發現,可以使用 3 種不同比例和 3 種不同縱橫比的框檢測圖像中的任何對象。

在Feature Map上使用不同大小的滑動窗口(如上圖的9個所示)。這個概念被稱為特征金字塔。這涉及在特征圖頂部使用 9 種不同大小的滑動窗口。

RPN

  • 區域提議網絡 (RPN) 從將輸入圖像饋送到卷積神經網絡開始。首先調整輸入圖像的大小,使其最短邊為 600 像素,長邊不超過 1000 像素。
  • 網絡的輸出特征(由H x W表示)通常比輸入圖像小得多,這取決于網絡模型的步幅。在Faster R-CNN論文中使用的兩個網絡模型(VGG、ZF-Net),網絡步長都是 16。這意味著網絡輸出特征中的兩個連續像素對應于輸入圖像中相距 16 個像素的兩個點。

下圖顯示了 在輸入圖像上,3 種不同縱橫比和 3 種不同尺寸的 9 個可能的錨點放置,使用的錨點具有 1282、2562、5122的 3 個盒子區域比例和 1:1、1:2 和 2:1 的 3 個縱橫比。

Faster R-CNN架構

如下為整體框架結構,結合上述過程來看,主要是三部分,Extrator進行特征提取、RPN 生成候選框、RoIHead對候選框進行分類并調整目標預測框的位置與大小。


Faster R-CNN使用了預訓練的VGG16作為backbone進行特征提取,實現方法是加載預訓練模型,抽取并分離前面的卷積層和后面的全連接層,固定卷積層中部分層的權重,用作特征提取,而全連接層則給 RoIHead 用作分類和回歸。

Faster R-CNN 聯合訓練有 4 個損失:

  • RPN分類(IoU 大于 0.5 Object foreground/ IoU 介于 0.1 和 0.5background)
  • RPN 回歸(Anchor → ROI)
  • Fast RCNN 分類(對象類)。
  • Fast RCNN 回歸(ROI → Bounding Box)

總結,R-CNN 和 Fast R-CNN 都使用基于 CPU 的區域提議算法,例如選擇性搜索算法,每張圖像大約需要 2 秒并在 CPU 計算上運行。Faster R-CNN論文通過使用另一個卷積網絡(RPN)來生成區域提議來解決這個問題。這不僅將每個圖像的區域提議時間從 2 秒降低到 10 毫秒,而且還允許區域提議階段與以下檢測階段共享層,從而導致特征表示的整體改進。

與50位技術專家面對面20年技術見證,附贈技術全景圖

總結

以上是生活随笔為你收集整理的深度学习和目标检测系列教程 7-300:先进的目标检测Faster R-CNN架构的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 成人在线观 | 无码人妻精品一区二区三区99不卡 | 免费在线成人 | 国精产品一区一区三区有限公司杨 | 麻豆爱爱| 久久久精品久久久久 | 日本免费高清一区二区 | 久久黄色小说 | 日韩视频免费看 | 无罩大乳的熟妇正在播放 | 人妻丰满熟妇av无码久久洗澡 | 中出亚洲 | 亚洲一区有码 | 国产第一页屁屁影院 | jzzijzzij亚洲成熟少妇在线观看 久久久精品人妻一区二区三区 | 狠狠久久婷婷 | 嫩草视频在线观看视频 | 精品人伦一区二区三区蜜桃免费 | 神马午夜一区 | 蜜臀99久久精品久久久久小说 | 人妻熟女一区 | 搡8o老女人老妇人老熟 | 尤物在线| 黄色理伦片 | 久操视频网站 | 欧美一区二区最爽乱淫视频免费看 | 另类天堂网 | 日本一品道 | 麻豆精品视频 | 国产综合精品 | 久久奇米 | 日本xxxxxⅹxxxx69| 性欧美丰满熟妇xxxx性仙踪林 | 北条麻妃一区二区三区 | 91香焦视频 | 黄色大片视频网站 | 一级久久久久久 | 色性网| 91欧美激情一区二区三区成人 | 动漫玉足吸乳羞免费网站玉足 | 欧美在线视频你懂的 | 日韩二级 | 一二三四区视频 | av网站在线免费观看 | 美女张开腿让男人桶爽 | 免费网站在线观看视频 | 天天看天天摸天天操 | 亚洲春色在线 | 国语对白一区二区 | 国产精品高清网站 | 日本艳妇 | 少妇av在线播放 | 久久久精品免费观看 | 亚洲欧美系列 | 欧美老熟 | a在线观看 | 欧美专区综合 | 精品三级国产 | 丁香婷婷综合激情五月色 | 高清av一区二区三区 | 成人久久久精品国产乱码一区二区 | 亚洲一区二区播放 | 久久精品tv | 伊人久久在线 | 天天干夜夜添 | 黄色一级片久久 | 亚洲美女av网站 | 美国av大片 | 黄色骚视频 | 综合在线视频 | 亚洲第一页夜 | 电影91久久久 | 人人cao | 久久网国产| 嫩草视频在线播放 | 新天堂av| 成人一区二区三区四区 | av福利影院 | 午夜视频在线观看一区 | 亚洲综合涩 | 日本一区二区精品 | heyzo亚洲| 欧美亚洲国产成人 | 午夜影院在线观看 | 午夜精品视频一区 | 亚洲精品高清视频 | 日本在线黄色 | 精品人妻码一区二区三区红楼视频 | 操日韩| 久久亚洲精品国产 | 亚洲国产成人无码av在线 | 俺也去五月婷婷 | 日韩欧美精品在线播放 | 免费看黄色片视频 | 关之琳三级全黄做爰在线观看 | 人妻夜夜爽天天爽三区麻豆av网站 | 日韩欧美一区二区区 | 18成人在线观看 | 特级西西444www高清大视频 |