电动力学每日一题 2021/10/10
電動力學每日一題 2021/10/10
上大學以前覺得自己大概數理化都能學得不錯,后來大一有兩門課讓我認清了現實,一門是程序設計,另一門是模電。程序設計學C語言,我當時學得勤奮刻苦,每次上機課都會主動多待兩個小時,但期中居然沒及格。模電就更不要說了,甚至要分數乘二才能及格。經過這兩門課后我接受了人確實會有很多不擅長的而且怎么學也學不會的東西。電磁理論電磁波經典電動力學基礎內容差別不大,共同點是都帶“電”,于是在模電課上發生的估計又要發生一次了。為了這學期期末分數不至于太難看,我打算試試每天記錄一道題,日復一日必有精進。
(a) There’s no electric field inside the shell, so
E(r)={0,r<RQr^4π?0r2,r>R\textbf E(\textbf r) = \begin{cases} 0, r < R \\ \frac{Q \hat r}{ 4 \pi \epsilon_0 r^2}, r>R \end{cases}E(r)={0,r<R4π?0?r2Qr^?,r>R?
The energy density is
E(r)=12?0∣E∣2+12μ0∣H∣2={μ0I28π2r2sin?2θ,r<RQ232π2?0r4+μ0I28π2r2sin?2θ,r>R\mathcal{E}(\textbf r) = \frac{1}{2} \epsilon_0 |\textbf E|^2 + \frac{1}{2}\mu_0 |\textbf H|^2=\begin{cases} \frac{\mu_0 I^2}{8 \pi^2 r^2 \sin^2 \theta},r<R \\ \frac{Q^2}{32 \pi^2 \epsilon_0 r^4}+\frac{\mu_0 I^2}{8 \pi^2 r^2 \sin^2 \theta} ,r>R\end{cases}E(r)=21??0?∣E∣2+21?μ0?∣H∣2={8π2r2sin2θμ0?I2?,r<R32π2?0?r4Q2?+8π2r2sin2θμ0?I2?,r>R?
(b) The Poynting vector is
S(r)=E×H={0,r<R?QI8π2?0r3sin?θθ^,r>R\textbf S(\textbf r) = \textbf E \times \textbf H = \begin{cases}0,r<R \\ -\frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta} \hat \theta , r>R \end{cases}S(r)=E×H={0,r<R?8π2?0?r3sinθQI?θ^,r>R?
Evaluate divergence of Poynting vector under spherical coordinate system, if θ∈(0,π)\theta \in(0,\pi)θ∈(0,π), r>Rr>Rr>R,
??S=1rsin?θ??θ(sin?θSθ)=1rsin?θ??θ(sin?θ?QI8π2?0r3sin?θ)=0\begin{aligned}\nabla \cdot \textbf S & = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta S_{\theta}) \\ & =\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{-QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right) =0\end{aligned}??S?=rsinθ1??θ??(sinθSθ?)=rsinθ1??θ??(sinθ8π2?0?r3sinθ?QI?)=0?
(c) Along the z-axis, the Poynting vector is directed toward the wire where z>R,θ→0z>R, \theta \to 0z>R,θ→0 and away from the wire where z<?R,θ→πz<-R,\theta \to \piz<?R,θ→π. Taking a small cylinder of radius ?\epsilon? and height δ\deltaδ whose center on the bottom locates on (0,0,R)(0,0,R)(0,0,R), the surface integral of S(r)\textbf S(\textbf r)S(r) over the cylinder is
∮CylinderS?da=∫SideofCylinderS?da=?(2π?δ)(QI8π2?0r3sin?θ)\oint_{Cylinder} \textbf S \cdot d \textbf a=\int_{Side\ of\ Cylinder} \textbf S \cdot d \textbf a=-(2 \pi \epsilon \delta) \left( \frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right)∮Cylinder?S?da=∫Side?of?Cylinder?S?da=?(2π?δ)(8π2?0?r3sinθQI?)
Now θ\thetaθ is so small that ?≈rsin?θ\epsilon \approx r \sin \theta?≈rsinθ, ∣z∣=∣rcos?(θ)∣≈r|z| = |r \cos(\theta)| \approx r∣z∣=∣rcos(θ)∣≈r,
?(2π?δ)(QI8π2?0r3sin?θ)≈?QIδ4π?0z2-(2 \pi \epsilon \delta) \left( \frac{QI}{8\pi^2 \epsilon_0 r^3 \sin \theta}\right) \approx- \frac{QI \delta}{4 \pi \epsilon_0 z^2}?(2π?δ)(8π2?0?r3sinθQI?)≈?4π?0?z2QIδ?
Consider the electric field acting on the wire at zzz over a short segment of length δ\deltaδ. The work is
∫SegmentE?Jfreedl=QIδ4π?0z2\int_{Segment} \textbf E \cdot \textbf J_{free} dl=\frac{Q I \delta }{ 4 \pi \epsilon_0 z^2} ∫Segment?E?Jfree?dl=4π?0?z2QIδ?
Thus, the energy re-enters the wire in the region above the shell. Similarly, the energy emanates from the wire in the region below the shell.
能量守恒說的是
??S+?E?t=0\nabla \cdot \textbf S + \frac{\partial \mathcal{E}}{\partial t} = 0??S+?t?E?=0
在這個問題中
??S=1rsin?θ??θ(sin?θSθ)=1rsin?θ??θ(?QI8π2?0r3)\nabla \cdot \textbf S =\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta S_{\theta}) = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left( \frac{-QI}{8\pi^2 \epsilon_0 r^3 }\right)??S=rsinθ1??θ??(sinθSθ?)=rsinθ1??θ??(8π2?0?r3?QI?)
當θ→0\theta \to 0θ→0或者θ→π\theta \to \piθ→π時,sin?θ→0\sin \theta \to 0sinθ→0,??S\nabla \cdot S??S成了00\frac{0}{0}00?不定型。所以(c)問要討論能量守恒需要用積分形式,在小體積內,Poynting vector的曲面積分應該等于電線攜帶的能量變化,也就應該等于電磁場對電線做的功。
總結
以上是生活随笔為你收集整理的电动力学每日一题 2021/10/10的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA OPTI512R 傅立叶光学导论1
- 下一篇: 电动力学每日一题 2021/10/11